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“Wherever he steps, whatever he touches, whatever he leaves,
even unconsciously, will serve as a silent witness against him. Not
only his fingerprints or his footprints, but his hair, the fibers from
his clothes, the glass he breaks, the tool mark he leaves, the paint he
scratches, the blood or semen he deposits or collects. All of these and
more, bear mute witness against him. This is evidence that does not
forget. It is not confused by the excitement of the moment. It is not
absent because human witnesses are. It is factual evidence. Physical
evidence cannot be wrong, it cannot perjure itself, it cannot be wholly
absent. Only human failure to find it, study and understand it, can
diminish its value.”

- Paul L. Kirk
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Abstract

Matching images to a discrete camera is of significance in forensic investigation.
In the case of digital images, forensic matching is possible through the use of
sensor noise present within every image. There exist misconceptions, however,
around how this noise reacts under variables such as temperature and the use
of different lens systems. This study aims to formulate a revised model of the
additive noise for an image sensor to determine if a new method for matching
images to sensors could be created which uses fewer resources than the existing
methods, and takes into account a wider range of environmental conditions.
Specifically, a revised noise model was needed to determine the effects of different
lens systems and the impact of temperature on sensor noise.

To determine the revised model, an updated literature search was conducted
on the background theory relating to CMOS sensors, as the existing work focuses
on CCD imaging sensors. This theory was then applied using six off the shelf
CMOS imaging sensors with integrated lens systems. An image sensor was
examined under scanning electron microscopy and through the use of Energy-
dispersive x-ray spectroscopy the non-uniform structure of individual pixels was
visually observed within the sensor. The lens systems were removed and made
interchangeable through the use of a 3D printed camera housing. Lens effects
were assessed by swapping lens systems between the cameras and using a pinhole
lens to remove all optical effects. The temperature was controlled using an
Arduino controlled Peltier plate device, and dark current images were obtained
at different temperatures using a blackout lens.

It was observed that dark current could be used to identify the temperature
of the image sensor at the time of acquisition, contrary to the statements in ex-
isting literature that sensor pattern noise is temperature invariant. It was shown
that the lens system contributes approximately a quarter of the signal power
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used for pattern matching between the image and sensor. Moreover, through
the use of targeted signal processing methods and simple ”Goldilocks” filters
processing times could be reduced by more than half by sacrificing precision
without losing accuracy.

This work indicates that sensor pattern noise, while already viable for foren-
sic identification of images to a specific camera, can also be used for identification
of an image to a specific lens system and an image sensors temperature. It has
also shown that a tool using sensor pattern noise may have a viable future as
a forensic method of triage when confronted with large image data sets. Such
additional information could prove effective for forensic investigators, intelli-
gence agencies and police when faced with any form of crime involving imaging
technology such as fraud, child exploitation or terrorism.
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current views on passive voice within academic writing. When the pronoun
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together through the relevant chapter. The exception to this is of course the
work that has been written in manuscript style with my PhD supervisors as
initial peer reviewers and co-authors. These papers, where indicated, have been
submitted, published or are awaiting publication to relevant academic journals.
In these chapters the use of “we” is used to indicate my co-authors and I.

In following with the current thoughts on the matter, I have made the deci-
sion to use the phrase Child Exploitation Material in this work to refer to Child
Sexual Exploitation Material and Child Sexual Abuse Material. All of these
phrases are used interchangeably. These phrases are preferred over the usage of
“Child Pornography” or “Pedo-Pornography” as they assist in highlighting the
gravity of the crimes that are committed [1].

As mentioned previously, this is a thesis conducted by mixed publication and
dissertation style. Figures and Tables are faithfully reproduced as they would
appear in a published work. However, acknowledgements have been condensed
into a single section at the start of this work, a single bibliography is provided
at the end and references to future work, where conducted as a separate study,
but, included in this thesis, have been edited for clarity and flow.
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Chapter 1

Introduction

1.1 Context
Cybercrime - crimes directed at computers, networks, software and data - is a

growing threat globally but principally in the Indo-Pacific region where many

countries lack legislative or technical capabilities to fight it [2]. Allowing public

confidence to be undermined in the digital domain will result in an estimated

loss of US$1.02 trillion in global economic growth [3]. Of particular concern

to the Indo-Pacific region is where computer equipment is used to facilitate

existing offences including those involving Child Sexual Exploitation Material

(CSEM) [4]. 1 There is no reliable data on the number of victims or offenders

who are currently engaged in the trade of this material [1] [5]. As such it makes

it impossible to assess if the problem is growing.

To combat this problem work has commenced on developing global indi-

cators to identify victims of CSEM using the images produced [1]. While the

continued investigatory efforts have turned towards victim-centric goals, pros-

ecution of crimes involving CSEM is still of vital importance. As such, it is

essential that images of offending can be linked to identified victims and also

1Child Sexual Exploitation Material - All material of a sexualised nature depicting children
including Child Sexual Abuse Material (CSAM) which is correctly used to describe material
documenting abusive acts towards children of a sexual nature or focusing on the genitalia of
a child.
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to identifiable offenders. “Offenders would be deterred through the knowledge

that governments have the know how to investigate them.” [5]

For researchers faced with the task to develop new tools and methods to

assist Governments in building cases against offenders their efforts can be defined

in clear directions based on the needs of investigators. For those in the field

confronted with an urgent and growing caseload, there is a need for the quick

categorisation and quarantine of images with the minimum of resources; the

triage problem. Investigators must also establish the provenance of an image

and link it to a particular suspect. This must be done to the different standard

of proof required in a particular court of laws and varies around the world.

Establishing the provenance of an image can be done in many ways. The

common goal is to link evidence (a photograph) back to a suspects camera,

or specifically the image sensor, with a high degree of certainty. This has been

referred to as the Camera Identification Problem [6]. However, the current meth-

ods of solving the Camera Identification Problem rely on the use of techniques

that are not widely understood, are vulnerable to counter forensic techniques

or have insufficient research behind them to meet the needs of a Daubert hear-

ing [7]. Focusing only on the use of Sensor Pattern Noise methods, they typically

involve the use of specific computing resources, are time and resource intensive

and have only been researched extensively to image sensors known as Charge

Coupled Devices (CCD) as opposed to the more common sensors now seen on

the market, the Active Pixel Sensor (APS) CMOS. The existing method also

relies upon large datasets to draw statistically significant conclusions, of which

such large data sets are not normally available in the field.

1.2 Motivation

A proposed solution to these problems would be to create a database of cameras

based on a unique signal like a watermark which is present within each image.

2
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This signal is made from noise present within each image referred to as Sensor

Pattern Noise (SPN). A similar solution has been proposed before but by using

only a subset of this noise know as Photo-Response Non-Uniformity (PRNU)

Noise [8]. These terms are discussed in further detail below.

Such a database when combined with social media, could be used in the

same manner as fingerprint databases around the world to trace and identify

criminals. When an image is uploaded to a cloud-based service provider or image

host the fingerprint could be extracted. This would then be compared against

the database. If it is matched against a fingerprint of interest, new intelligence

about the location of the upload would be added to a case file. Someone in

possession of such a camera could then be questioned by authorities as to why

they had a camera known to have been used in the commissioning of CSEM or

CSAM.

However, what are the issues with such an approach? By insisting each

camera manufacturer record the sensor pattern noise fingerprint before it leaves

the factory, a provenance chain can be established. However, if the process to

document the fingerprint is resource intensive then manufacturers are unlikely

to comply. Furthermore, just as the ballistic fingerprint for a firearm changes

with the firearm’s use, if a camera’s SPN fingerprint changes over time, then

such storage would be a waste of resources and lead to high false detection rate.

What is therefore needed is a method for generating a fingerprint based on the

SPN methods that are stable across time, uses limited resources and is invariant

to environmental conditions.

1.3 Aim and Scope

The aim of this thesis is therefore to develop a new method for linking images

back to a source camera based on the sensor pattern noise methods of [6] that

uses considerably fewer resources. Specifically, is it possible to create a reference

3
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pattern from a single image taken with an APS CMOS?

To answer this question several hypothesises will be explored:

• Is dark current contaminating SPN fingerprints?

• Can a more accurate fingerprint be obtained by removing lens aberrations

from SPN correlations?

• Can Dark current in isolation be used as a PRNU alternative?

1.4 Significance
For an image to be linked back to a camera, there are several processes available

for forensic scientists to utilise. One such method involves the analytical study

of an images pattern noise using a representation of a unique signature known

as the Pixel Non-Uniformity (PNU) noise to obtain a correlation value of how

similar the image is to this reference pattern. It is a widely accepted that noise

can be introduced through many different sources as a digital image is taken.

Conventional sources of noise include quantisation, half-toning, channel noise,

shot noise and compression errors [9] [10].

During the manufacturing process of a digital imaging sensor slight changes

to structures within the silicon that is used to make up the sensor are responsible

for differences in how each photosite will respond to excitation from light. These

minor differences are responsible for a contribution of additive noise that falls

under the category of Photo-Response Non-Uniformity (PRNU) noise [10] or

more specifically Pixel Non-Uniformity Noise (PNU) [6] [11] [12]; acknowledging

that there is a slight misunderstanding with this term within the literature as

defined in Holst [10]. As a parallel it took 69 years from the arguable discovery

of the fingerprint in a criminal context before it was used in a court of law.

Likewise, 33 years of research passed from the discovery of DNA before its first

successful use in a criminal trial. As it will be shown in Chapter 3, the PRNU

4
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method has only been under research for a decade and as such is still open for

many advances before it will be awarded certainty in the criminal context. As

such it is still a relatively new technique and is always open to interpretation

and study.

While some ten years of research has been undertaken on using PRNU as a

tool to solve the Camera Identification Problem, there is little knowledge of the

thermal characteristics of this noise. There is additionally minimal evidence to

suggest how this noise may change over time. Research conducted suggests that

positive matches remain after the passage of time however, contrary to the con-

clusions currently drawn this does not infer the stability of the fingerprint since

other metrics are being included in the reference pattern which contaminates

the sensor pattern noise; such as compression artefacts or dark current [13, 14].

In fact, it has been shown that with the addition of more defect pixels over

time to the pattern the approximate age of an image can be determined, thus

assisting in determining timelines [14].

Holst shows that the noise contributed by the sensor’s dark current, the

current output by the sensor in the absence of illumination, is temperature

dependant [10]. It has been suggested within the literature that PRNU is ideally

independent of temperature [6] [11]. This is because the effects of dark current

may be subtracted from the output through direct removal of a dark frame

[10]. However, the cause of dark current is inherently attributed to the same

physical electrical characteristics as PRNU with the difference being the the

illumination of the sensor. This suggests that simple removal by dark frame

may not eliminate all traces. Additionally, sensors that employ advanced designs

with multiple transistors to reduce noise will still exhibit dark current within

these additional transistors as each PN junction will cause additional thermal

effects. Currently, the impact of this, and other sources of random noise are

removed through frame averaging requiring the use of large data sets(N > 50).

5
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Some work has been done in the area of lens aberrations and how they

may be manipulated for image provenance purposes [15]. The work of Knight,

Moschu and Sorell is particularly important as this yielded inconclusive results in

determining if a particular lens was culpable in the provenance of a specific image

[16]. There is also a wealth of information regarding the types of aberrations

that can occur within the lens. These are primarily referred to as the Seidel

Aberrations after the work of Ludwig von Seidel [17] [18]. The central research

question posed in our work has not been addressed in the literature though.

Additionally, the literature has not isolated the pattern noise from the lens

using a pinhole aperture. This is novel and will enable us to verify the works

existing. It will also allow a signal analysis to be performed to isolate dark

current as a reference pattern.

1.5 Overview

To address these aims, several studies have been conducted. Firstly, a new model

of SPN was established by taking into account each of the overlooked areas

highlighted above. This is described in Chapter 4 and shows how the new theory

of unifying SPN as a tool will progress as an extension of the existing literature.

In Chapter 5, we examine a CMOS image sensor under a scanning electron

microscope (SEM) to provide a visual understanding to benefit a lay juror as to

where PNU arises from. In Chapter 6 the lens aberration effects will be isolated

from the SPN using a pinhole to establish an overall signal-to-noise analysis

of each component contributing to SPN beginning the process of breaking the

SPN down. In Chapter 7, the effect of temperature on CMOS sensors will

be examined, contrasted and compared under controlled conditions that are

specifically designed to exacerbate the dark current present to emphasise the

effects of dark current shot noise. In Chapter 8 we contextualise the work

in the wider field of digital forensics before providing a summary in chapter

6
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9 explaining how these studies proffer a tangible solution to the problem as

described and define future directions for the work.
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Chapter 2

Technical Background

2.1 Image Sensor Fundamentals

There are two types of image sensor that dominate the market. These are the

Charge Couple Devices (CCD, discussed in Section 2.1.1) and Active Pixel Sen-

sor CMOS Image Sensors (APS, discussed in Section 2.1.2). In this chapter we

use APS to refer to the active pixel sensor CMOS image sensor and CMOS to

refer to the complimentary metal oxide silicon fabrication process. It is noted

that the abbreviation CIS (CMOS image sensor) is also relevant and interchange-

able [10]. Other sensor architectures exist, such as the Organic Photoelectric

Conversion (OPC) sensor (discussed in Section 2.1.3) and the foveon sensor -

based upon the same principle of colour film which uses the wavelength property

of light to sample different colours at increasing depths. However, these sensor

have not become as ubiquitous as the APS sensor for imaging. Even the CCD

sensor has lost its popularity. A brief analysis of image sensors available on the

market at time of writing (November 2018) sees very few cameras or camera

modules which employ the foveon sensors available for purchase. Scientific ap-

plications are dominated by the CCD due to wider dynamic range and other

advantages, however most devices now use APS sensors due to the ubiquitous
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nature of the mobile phone camera. CCD sensors are still seen in some profes-

sional level dSLR cameras but even these are starting to become dominated by

the APS. Sensors other than the APS and CCD are therefore considered outside

the scope of this work due to limited forensic relevance.

The operating principle for the two dominant types of architectures on the

market are the same. CCD and APS sensors, both being solid state devices,

convert discrete photons into discrete electrons using a block of semiconductor

material. This block of material is divided into two types, P type material on

one side and N type material on the other to form a PN junction. This junction

is the building block for most semiconductor circuits including image sensors

and the associated readout circuitry.

2.1.1 CCD

Several advancements in technology were needed in order for Steven Sasson and

Gareth Lloyd’s invention to become what is now known as the digital camera. In

their 1977 patent application, “Electronic Still Camera” [19] Sasson and Lloyd

describe the first electronic device that is the embodiment of what we know as

the digital camera today. Their device contained an “inexpensive information

recording medium”, dark current removal filters, high-speed A/D (analogue-

to-digital) converter, buffer memory, permanent memory and finally a way to

display an image onto a screen. This is similar to the structure we see for

modern consumer digital cameras. What was novel about their design was the

use of a Charge Coupled Device (CCD) for the image sensor, as designed by

Smith and Boyle several years earlier [20] and previously envisaged by Michael

Francis Tompsett [21].

The main design feature of the CCD that enabled Sasson’s design is the way

in which it reads out charge. The circuit for the CCD is shown in Figure 2.3. In

each individual photo-diode an analogue charge is stored due to the interaction

of photons striking the depletion region of a PN silicon junction. These photons

10
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Figure 2.1: Modern Digital Camera.

are filtered according to the Bayer colour filter array (CFA) to ensure a colour

image can be obtained [22]. Each pixel is then read out in a serial fashion via

a concept similar to that of a bucket brigade device. The charge contained in

each PN junction is transferred from pixel to pixel, with near perfect charge

transfer efficiency, until they reach a bus. This bus is connected to an analogue

to digital (A/D) converter and each charge is read out as a quantized digital

signal. The limitation of such technology stems from the requirement for near

perfect charge efficiency over macroscopic distances within the silicon structure

of the device. This requirement limits the maximum physical size of a CCD.

A water analogy of how a CCD works is shown in Figure 2.2 using droplets of

water instead of photons to fill jars (the depletion region of the photo-diode) on a

moving conveyor belt before being measured on a digital scale (A/D converter).

Each jar takes the previous position of the next jar in sequence representing the

perfect charge transfer efficiency. In reality, instead of a conveyor belt each jar is

tipped into each other jar in sequence. Some water would remain due to friction

and other such forces within the glass jar acting upon the water. This represents

the small loss of charge as each individual pixel would experience. The amount

of water lost is a minuscule amount compared to the overall capacity. This is

the imperfect charge transfer. Should this be extrapolated over a large surface

area with many jars it becomes apparent that the amount of water left in each

jar would eventually result in no water being placed on our read out conveyor.

The same thing occurs within the silicon PN photodiode and hence is the cause

11
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for the size restriction of the CCD.

Figure 2.2: Bucket brigade analogy adapted from Janesick [23]. Each jar fills with “water”
along the array. Once the “rain” finishes the conveyors move one bucket at a time on to the
conveyor below which in turn shifts each jar onto a set of scales to be weighed. The scale
emulates our analog to digital convertor, the rain our light, the jars our photosites within the
CCD and our horizontal conveyor the bus.

Sasson established that a 0.01 megapixel camera (about 100 x 100 pixels)

was not capable of outputting an image of comparable quality to analogue

prints [24]. Consumers would need at least a sensor capable of measuring light

to 1 megapixel (about 1000 x 1000 pixels) before the quality of analogue prints

could be matched. Using Moore’s law, a relationship where the number of tran-

sistors that can fit onto an integrated circuit approximately doubles every two

years, he calculated that it would take approximately 30 years before the tech-

nology would mature to a usable format [24]. This estimation was approximately

correct with digital cameras not becoming popular until the early 2000’s.

12
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2.1.2 APS CMOS

Just as the CCD was reaching consumer levels a new technology was being

formulated. In 1994 an imaging device based on CMOS (monolithic comple-

mentary mental oxide semiconductor) technology came about thanks to the

work of Fossum et al [25].

Figure 2.3: A breakdown of the CCD sensor. Note the readout method is the bucket brigade
system as mentioned earlier.

Figure 2.4: A breakdown of the APS CMOS sensors. The readout method is via row and
column select transistors.

The key difference of the APS from the CCD is the way in which charge

is transferred. Figure 2.4 shows the basic circuit structure. To avoid the limi-

tations introduced by the need for perfect transfer of charge within the silicon

13
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of the CCD, the APS concept integrates transistors into the pixel area of the

imaging detector array which buffer the signal and drive the readout interface.

Charge from each pixel is then carried across wires rather than through the

silicon structure of the device. This results in less power needed to read out

the individual pixels within the device and consequently the physical fill-factor

can be increased for each pixel. Once microlenses are included on the array the

fill-factor of the device increases up to 80% when compared to CCD sensors [26].

As Fossum reviewed the technology he noted that “a new imaging sensor tech-

nology that preserves the positive attributes of the CCD yet eliminates the need

for charge transfer could quickly eclipse the CCD [26].” He was right. The de-

mand for cameras in consumer electrical devices now means that the humble

digital camera is ubiquitous, especially in platforms such as the mobile phone.

To make an image sensor using CMOS processes however takes several steps.

This process uses standard CMOS fabrication processes, unlike the process used

to manufacture a CCD. The complete CMOS process is beyond the scope of this

work. A simplified version is described here. Using a CMOS process a diode

region is implanted into a silicon wafer. 4 layers of metal wires are layered on top

ensuring a light channel is centred above the diode. Finally, a CFA and micro

lens is formed to complete the sensor. This creates a frontside illuminated (FSI)

sensor. This is demonstrated in Figure 2.5.

Figure 2.5: The frontside illumination sensor fabrication process using CMOS. The diode is
visible at the bottom of the structure with the metal wire layers above the diode.

FSI sensors however have quality issues relating to the incident light hitting

14



15

the metal layers and reflecting into incorrect, neighbouring photodiodes or not

being measured at all. To address this, light channels of dielectric material or

physical shielding were implemented; however, this was not completely resolved

until the introduction of the Backside illuminated (BSI) sensor. The BSI sensor

fabrication process involved reversing the order of the circuitry and the diode

so that the light first hits the photodiode. This is achieved by processing both

sides of the silicon wafer in a double sided operation (Figure 2.6). This results

in less reflection, scattering and light loss occurring within the metal layers of

the sensor, however the manufacturing process requires the silicon wafer to be

flipped, thinned and processed on both sides.

Figure 2.6: The backside illumination sensor fabrication process using CMOS. The diode is
visible at the top of the structure with the metal wire layers below the diode. The process
is similar to that of the FSI sensor however involves etching operations on both sides of the
wafer and hence, flipping the wafer and bonding to a new silicon handle.

To achieve processing on both sides, however, a 3D or stacked chip was re-

quired to be developed. The top layer of the image sensing wafer is required to

be bonded to an additional wafer to execute the further CMOS steps required

to fabricate the lens and CFA. This is achieved using a direct oxide bond and

through silicon via (TSV) interconnects around the perimeter to allow connec-

tion to the underlying circuit. A draw back of this process is that it requires

high volume manufacturing to be cost effective [27]. Stacking via direct wire

bonding or direct bond interconnect (DBI) resolves some of the issues which

leads to this higher cost and offers an alternative by bonding without out the

need for TSV. A graphical contrast between TSV and DBI is shown in [28, Fig.
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1] reproduced below as Figure 2.7.

Figure 2.7: An example provided by TechInsights showing the difference between TSV (a),
(b), and DBI technology (c) required for the stacking of multiple CMOS wafers to create
smaller but 3D IC packages.

The use of DBI also allows the increased use of the stacked wafers below the

original wafer. This leads to numerous CMOS wafers integrated vertically in

the sensor allowing advanced image processing to be performed on chip. Such

vertical integration significantly decreases the size of the overall sensor.

Figure 2.8: Using DBI and direct oxide bonding we can increase the number of wafers bonded
to the image sensor. This leads to fully integrated image processing packages on chip.
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One of the main benefits from CCD to APS is the ability to read out indi-

vidual pixels as distinct from entire lines or sections at a time. This assists with

operations such as binning where groups of pixels are summed and averaged to

be read out as a single pixel. Such operations reduce noise due to averaging.

Additionally, noise cancellation techniques such as correlated double sampling

can be employed with ease on chip through the use of additional stacked wafers

containing additional circuitry. Other benefits include the lower production

cost since standard CMOS fabrication processes can be used, and lower power

consumption.

The advances from CMOS fabrication processes on image sensors are critical

for image sensor size shrinking and the inclusion of more powerful image sen-

sors in mobile applications. The forensic implications from CCD to APS from

the approach of pixel non-uniformity are limited. When stacking circuitry the

connections to the remaining parts of the circuit are either on the peripheral

of the sensor or buried under the photo sensing section of the diode. Hence

there is minimal impact on the photo-detecting region of the sensor, if any. The

advances in image stacking technology does mean, however, that a reduction

in noise is apparent through an increase in the signal to noise ratio since these

advances enable more photons to enter the individual photo-detecting regions.

Other advances have also been made to increase the number of photons entering

the diode region. Such advances include the use of wider shields and dielectric

isolation between pixels to prevent optical cross talk referred to as deep trench

isolation (DTI). The length of the photo-diode can also be increased to optimise

the near-infra red sensitivity.

2.1.3 Future Developments

Scientific CCDs remain a critical application space due to their wider dynamic

range than APS [10,29]. In future this may be challenged by advances in photon

detection methods such as the collaboration between Fuji Film and Panasonic
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in the area of organic films. This collaboration announced in 2013 [30] relies on

the principle of the photoelectric effect to generate an image and is referred to as

an Organic Photoelectric Conversion (OPC) sensor or an Organic Photoelectric

Film (OPF) sensor. Both are used interchangeably in this text. An example of

this structure is given in [30, Fig. 1] reproduced here as Figure 2.9. This method

of photon detection results in approximately 20% more dynamic range [30] than

APS.

Figure 2.9: Graphical example of an OPC sensor in comparison to a FIS.

Aside from the photo detection relying on the photoelectric effect as opposed

to the inner photoelectric effect of a photodiode, the readout circuitry is also

simplified for the OPC sensor. The charge storage component in an OPC is a

smaller circuit compared to the CMOS counterpart. This is due to the removal

of the photodiode and associated transfer node needed to move the detected

electrical charge from the photodiode to the charge storage node for read out.

In the OPC sensor charge is read directly from the organic film to the charge

storage node below. This is illustrated in [30, Fig. 8] and reproduced in Figure

2.10.

Such sensors have been realised in 2018 [31]. It is too early to determine if

they will be adopted by the market since no information regarding cross talk is

discussed. Since the design still uses a Bayer matrix it is feasible for photons
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Figure 2.10: Aside from the photo detecting element, the charge storage and read out elements
also differ within the OPC sensor.

which have a high incident angle to strike the OPC layer and be realised as the

wrong colour. This is of course a principle advantage of the BIS structure with

deep trench isolation as discussed above and as such may prevent adoption.

There are also additional issues due to reset noise since the charge storage

element is physically connected to the organic layer within the sensor. As a

result, in pixel noise cancellation is required to be used [31]. It is unclear if the

advanced noise cancellation methods employed would be effective in reducing

crosstalk or other sources of noise other than the stated reset noise.

Panasonic and Fuji Film also claim that the OPC sensor is able to sample

significantly more photons to produce a much wider dynamic range [30, 31].

It is unclear how this would affect the signal to noise ratio within a standard

image. Experiments will need to be conducted to determine if SPN methods

are still applicable on this emerging camera technology. Should SPN methods

not work (or work with less precision) this would confirm the hypothesis that a

significant source of PNU is due to the non-uniformity within the PN region of a

photodiode. However, should SPN methods still work, this would demonstrate

that PNU can be at least partially attributable to the remaining elements of

the sensor that are universally similar to CMOS and CCD sensors.
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OPC sensors may revolutionise the mobile imaging market or they may be

susceptible to the same fate as the foveon sensor. Given the recent applica-

tion of this technology in a sensor format, it will be some time before forensic

investigators are given the opportunity to determine its effects, if any.

2.2 Sensor Pattern Noise Extraction Process

We model the output of an image sensor Y as a noise-free image I multiplied

by a noise signal k.

Y = I⊙ k (2.1)

The noise signal k when isolated and properly filtered is assumed to be

the sensor pattern noise (SPN) of an image. Should k not be isolated or be

incorrectly filtered then other elements from the noise model will still be present.

The method for extracting SPN is based on an assumption that all noise

above a spatial frequency f is unique to a sensor. Using this assumption we

can thus isolate the signal using any high-pass filter technique. In our work

we use the wavelet coring method as the filter first proposed in [12] but as

modified in [16] for Bayer RAW images. This involves using a wavelet based

filter to obtain a noise free image I decimated into individual colour filter arrays

(CFA). The noise is estimated in each CFA sub-array before recombining. The

SPN estimation based on this high-frequency assumption is then obtained by

subtracting the filtered image from the original sensor output.

k = I⊙ k − I (2.2)

In reality there are additional sources of error present within our estima-

tion. We discuss these further in section 4.4. We now let S1 be the SPN, S2 be

the artefacts due to the optics and S3 be the contribution of all other random
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variables modelled with a Gaussian distribution within image noise residues

N1,N2, . . . ,NN . We assume S1, S2 and S3 to be independent and additive.

Modelling the high-frequency components of our image above the cut-off fre-

quency as f(I) our noise residue is defined as:

Wres = S1 + S2 + S3 + f(I) (2.3)

We define our reference pattern Wref as the average of N noise residues taken

from flat field images where N is greater than 50 .

Wref =
1

N

N−1

∑
i=1

Wresi +Wresi+1 (2.4)

This averaging is critical to ensure the effects of S3 approach zero due to

the Gaussian distribution. As more images are included in the average, the

elements of f(I) can be amplified so it is important to reduce the effects of

f(I) to minimise a source of possible error. We can do this in our original

reference pattern calculation by using smooth flat field images, in RAW format

and isolate to each Bayer filter element.

Upon correlation Wcorr with an uncorrelated image under test WIUT outside

of the previously defined set of images with the reference pattern we obtain:

Wcorr =Wref ⊗WIUT (2.5)

= (S1ref + S2ref + nwref
) ⊗ (S1 + S2 + nWIUT

) (2.6)

where nwref and nWIUT
are the uncorrelated high-frequency components of

the image obtained from the reference pattern and the image respectively that

are still present after wavelet coring.

Assuming a priori that the image is within the same set of images taken

from the initial camera (ie. S1ref = S1) and taking the expectation of our result:
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E{Wcorr} =S2
1 + S2

2 + 2 ⋅ nwref
⋅ nWIUT

+ 2 ⋅ S1 ⋅ S2

+ S1 ⋅ nWIUT
+ S2 ⋅ nWIUT

+ S1 ⋅ nWref

+ S2 ⋅ nWref

(2.7)

Given that the noise signals S1 and S2 are assumed independent, we can fur-

ther simplify as cross terms with these independent signals are all uncorrelated

and will be zero:

E{Wcorr} = S2
1 + S2

2 + 2 ⋅ nwref
⋅ nWIUT

(2.8)

We can further simplify this final term as the contribution from the high-

frequency bias from the image content as nV .

E{Wcorr} = S2
1 + S2

2 + nV (2.9)

In Chapter 6 we will use Equation 2.9 to perform a SNR analysis of the noise

residues obtained via the standard wavelet process using a tool box provided by

Goljan et al [8]. This process is further explained in Section 6.3 where a robust

experimental analysis is performed to isolate dark current and lens effects from

SPN. This will enable the isolation of the contribution of lens artefacts and dark

current on our reference pattern.
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Chapter 3

Literature Review

Here I establish the field of knowledge for the submitted papers which are pre-

sented in Chapters 5, 6 and 7. This is continued in Chapter 4 where further

context of this chapter is presented in a manuscript style highlighting the pro-

posed benefits of rethinking the sensor pattern noise model as described below.

3.1 The Blind Camera Identification Problem

Image forensics can be broken down into two main objectives: establishing the

credibility of an image; or establishing its origin. Establishing an image’s cred-

ibility refers to understanding an image as a true and accurate reflection of the

scene. However, with the advent of image manipulation techniques, both digital

and analogue, establishing how credible an image is requires great skill. This

is often simplified as detecting an image forgery, however it is more than just a

simple digital forgery given that images can be staged. The second objective of

establishing an images origin concerns itself with establishing the history of a

particular image. Which camera was responsible for the image’s capture is the

primary question where an answer is often sought, however, there are other per-

tinent questions to be answered in the age of information sharing. This includes

understanding which social media platforms an image may have been shared
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thorough, where the image has been stored, what file format the image has

been processed as and which image programs have been used to view the image.

We concern ourselves with only one of these problems, that is the identification

of the camera responsible for taking the image originally. This is known in the

literature as the camera identification problem.

3.1.1 SPN and Blind Camera Identification

There has now been close to two decades of research into the field of “ballis-

tic” fingerprinting of image sensors for forensic identification to solve the camera

identification and verification problem using sensor pattern noise, a combination

of dark current [32] and photo-response non-uniformity noise (PRNU) [12]. The

camera identification problem focuses on identifying which camera is respon-

sible for photographing a particular image having a priori knowledge that the

camera is within the set of cameras under test (closed set). The camera verifi-

cation problem is a complicated version of this problem and requires identifying

if a photograph was taken by a camera in possession of an investigator with-

out a priori knowledge (open set) of its involvement. In this manner, forensic

investigators and law enforcement have seen sensor pattern noise to be a capa-

ble tool for image provenance investigations [33] and image forgery detection

alike. Since the principal extraction method for the sensor pattern fingerprint is

via a high-pass filter, it is unclear how the lens, through high-frequency Seidel

aberrations, contributes to the fingerprint.

Sensor pattern noise has been widely tested across a variety of imaging

platforms. It has been shown to be effective in identifying images from still

image cameras [12], scanners and photocopiers [34, 35], video cameras [36] and

fingerprint sensors of similar design [37].

While much work has been done to solve the Camera Identification Problem

legal professionals wishing to use these methods may face problems regarding its

admissibility due to stringent requirements of the Daubert standard requiring

24



25

known error rates and general acceptance to have been reached within the scien-

tific community [7,38]. What compounds this problem is that much of the liter-

ature has focused on identifying Charged Coupled Devices (CCD) as opposed to

the more recent invention of the Active Pixel Sensors based on Complimentary

Metal-Oxide Semiconductor technology (APS). This is an issue because APS

now dominates the market due to their lower cost and better performance [10].

Whilst much work has been done on improving the estimation of the PRNU

signature contained within the noise residue [39] it still remains an approxima-

tion. From the fingerprint extraction process described in detail in Section 2.2

it is clear that additional signals remain, including trace artefacts from the lens.

These sources of interference are primarily related to the image capture process

referred to as the image pipeline (Figure 3.1).

To analyse sources of noise, the pipe can be broken down into three main

categories with a fourth category related to the environment the camera is op-

erating in. The breakdown of each area of noise in this way creates a dedicated

area of research where each resultant source of noise must be tracked and doc-

umented within the SPN model. These areas are the physical image pipe, the

digital image pipe, the image scene itself and the environment. We describe

these areas below and explore their noise contribution mathematically in Sec-

tion 6.3. Each section of the pipe is relevant for the analysis of the origin or

credibility of an image.

3.2 Forensic Implications of the Physical Image

Pipeline
The physical image pipeline comprises the lens optical system (LOS) including

any filters applied, the sub lens system, the image sensor and any associated

electronics required to turn the analogue signal into a digital signal ready for

processing by the digital image pipeline. This includes quantisation by any
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Figure 3.1: The image capture process referred to as the image pipeline contains two discrete
sections, the analogue and the digital. Each element within the pipeline can be exploited
to solve the camera identity problem. The analogue pipe consists of the lens optical system
including the colour filter array and micro lens system, the image sensor and the analogue
readout electronics. The digital pipe commences from the output of the analogue to digital
converters (ADC) and involves all the in camera digital processes, the discrete digital signal
transverses before finally being saved as an image file.

analogue to digital to converters.

3.2.1 Image Sensor Specific

There are several types of image sensors on the market. Whilst these vary in

popularity overtime, two main competitors have emerged as ubiquitous through-

out the industry. Charged-coupled devices (CCD) were the first widely adopted

sensor type. However, these large and expensive devices have since been sur-

passed in popularity by the Active Pixel CMOS (CMOS) image sensors due to

the ease of manufacture and small form size. Much of the theory that was ap-

plicable to CCDs should be directly applicable to CMOS sensors however, it is

hypothesised that there are some differences that are yet to be fully realised in

the research literature. The image sensor can be regarded as the only unique el-
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ement of the camera involved in the image capture process since lenses are often

able to be interchanged. This means considerable literature has been focused on

the study of Pixel Non-Uniformity (PNU) noise, that is the non-uniform output

of discrete pixels since this forms a unique signature for a camera [12]. PNU

can be described as a combination of pixel defects (pixels that are saturated

or under exposed) and noise due to dark current (DSN) and photo response

non-uniformity (PRNU) [10].

Hot and Dead Pixels

As the number of pixels increase on the array so too does the chance of a

manufacturing defect. These defects within the sensor are static regions within

the sensor that do not react as designed to illumination. Such reactions may

be permanently on, causing a hot pixel, or permanently off resulting in a dead

pixel. This creates a static pattern that may be used to successfully match an

image to its source camera [40]. Many modern cameras facilitate hot and dead

pixel tracking algorithms to ensure that these pixels are hidden prior to Bayer

interpolation.

Dark Current (DSN)

All image sensors regardless of construction have a thermally induced signal

present in all images referred to as the dark current or “Dark Sensor Noise”

(DSN). DSN is often referred to as Fixed Pattern Noise (FPN) however, in this

work we will move away from this notation since it is dependant on tempera-

ture. FPN would be a more accurate description for PNU in our forensic context

hence, some confusion exists if we use this terminology. DSN signal arises from

the thermal energy of the sensor within the PN junction of the silicon causing

electrons to excite through the lattice structure into the subsequent amplifier

and analogue-to-digital conversion pipeline. In a method that pre-dates the

Lukáš methodology it has been shown that this stochastic dark current signal
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can be used as a suitable reference pattern for the identification of tape video

cameras [32]. However, as this signal is a high spatial frequency signal, its effects

are not removed by the high-pass filter nor the subsequent PRNU estimation.

DSN remains an open question for isolation in images that contain it. However,

it can be suppressed through the subtraction of a dark frame prior to the im-

age processing stage of the image capture pipeline or through cooling [10]. [41]

further extended the work by applying a hybrid method of identification using

DSN and PRNU in combination for greater precision. However, this method

did not explore the temperature dependency of DSN and how it may effect the

precision or accuracy of the positive match obtained.

Photo Response Non-Uniformity (PRNU)

Research published in 2005 by Lukáŝ, Goljan and Freidrich (Lukáŝ et al) [6,11,

12] demonstrated that by exploiting this PNU a digital image can be identified

back to a specific digital camera. This was achieved through the analysis of noise

contributed by Photo Response Non-Uniformity instead of dark current. The

confusion in terminology as described earlier is avoided by adopting the same

definition as in [11] whereby PRNU is defined as noise due to PNU and low

frequency defects such as dust and scratches on the lens or imaging sensor. By

passing the PRNU through a high-pass filter an approximation for the PNU can

be obtained. Hence, a forensic fingerprint can be isolated for a specific camera

and image. As in [41], the effects of temperature have not been considered. It

is also worth noting that if the images have been subjected to a dark frame

subtraction in camera, the PRNU finger prints will contain a deeply attenuated

DSN contributed to PNU.

Since both DSN and PRNU are caused by differences in an image sensor such

as the individual silicon substrate doping and the variable size of the photodiode

it is often referred to collectively as Sensor Pattern Noise or SPN.
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3.2.2 Electronics

Banding/Seam Noise

To improve the readout speed of CCD sensors, multiple on-chip amplifiers may

be used. Similarly, the number of transistors can be increased in CMOS designs.

However, the addition of non-identical amplifiers reading sections of the image

sensor array comes at the expense of streaks called banding or seam noise [29].

Extreme cases can be seen in CCD arrays divided into quadrants or rows where

each quadrant or row is read out independently. This noise is not included in the

additive signal model discussed in Chapter 4, but its effects will be seen passed

directly through the high-pass filter. Due to proprietary designs it is unknown

what effect this will have on CMOS sensors that deviate from the patent [25]

by sharing amplifiers between active pixels. Manufacturers are aware of such

noise and go to great lengths to reduce it through the use of Correlated Double

Sampling (CDS). However, some non-uniformity would remain.

Random Processes

Additional random noises are present within the additive signal model. Sources

include amplifier noise, voltage or timing frequency and incomplete resets of

pixel wells back to zero. These sources of noise are attenuated through frame

averaging [10].

3.2.3 Lens Design

Lens aberrations that can appear within an image included pin cushion and

barrel distortion, chromatic aberration, coma, astigmatism, and spherical aber-

ration. These are third-order optics or more commonly known as Seidel aber-

rations [42]. The most common type of lens to correct for these aberrations is

an anastigmat, which is a lens made up of multiple elements. These elements

are designed to work in unison to reduce the effects of Seidel aberrations on the
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Figure 3.2: The inner parts of the Sony IMX219 dual anastigmat lens as used in this chapter
(above) with its graphical representation (below). The individual lens components are seen
from left to right and include stops, lenses and finally an infrared filter.

image.

In this chapter we use Sony IMX219PQ CMOS cameras with a built in dual

anastigmat lens as seen in Figure 3.2. We are able to compare and contrast

the results between several of these lenses. Similar work has been done in [16]

where the lens on a dSLR was substituted for ones of similar design. This work

showed that the lens was not statistically significant within the noise residue to

uniquely identify a specific lens. This was due to lenses of similar design being

used. Our work in this chapter is unique as we remove the lens contribution

completely through the use of pinhole lenses. In doing so we are able to analyse

the lens contribution to the noise residue directly.
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3.3 Forensic Implications of the Digital Image

Pipeline
The digital image pipeline comprises of the operations that the digital signal

undergoes after conversion by the analogue to digital converters to create the

output file from the camera. Scaling, cropping, cloning or resaving is not tradi-

tionally included in this pipeline and are left as implications of the image itself.

However, with the increasing ubiquitous nature of all-in-one image processing

packages on chip, these operations can increasingly be done on the camera and

therefore, may need to be considered.

3.3.1 Compression Artefacts

Image file compression artefacts from within the firmware have already been

shown to survive the filtration process [16]. This creates a source of error when

definitively matching to an image sensor. To avoid this source of error, raw

images should be used where ever possible in creating reference patterns and

noise residues. However, not all candidate images under test will be in raw image

format. A solution was proposed in [43] source which averaged macro blocks

of half the size of the JPEG discrete cosine transformation (DCT) macro block

to create an averaged noise residue. This averaged noise residue suppresses the

effects of the DCT edge effects. In our work we consider only raw images to

avoid the impacts of lossy quantisation and downsampling.

3.3.2 Camera Noise

Each image is first passed through a high-pass filter prior to PRNU estimation.

This results in low-frequency scene content being suppressed but high-frequency

remaining in the noise residues upon computation. As a result, high-frequency

content is considered in each reference pattern calculation. To suppress this con-

tent in source camera verification applications, techniques such as thresholding
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have been developed [43]. However, images that contain large amounts of dark,

saturated or high-frequency regions are more likely to be incorrectly identified

using this method.

Through the digital processing pipeline of the image capture process addi-

tional noise is added to the model through “camera noise” [10]. This “camera

noise” is added via digital corrections such as white balance and gamma correc-

tion.

3.3.3 Metadata

When an image is saved more than 460 additional metadata tags of information

can also be saved in parallel, embedded within the binary file structure of the

image. The most common format for this data is the EXIF 2.3 file format [44].

This standard allows images to correctly render between platforms. Tags saved

alongside the image can include location data, image size, a smaller thumbnail

of the image and additional information relating to make and mode [45]. Incon-

sistencies within the metadata can be linked to image tampering or improper

chain of custody from the original image. Fields such as the make and model of

the camera can be used to link the image to a class of camera, but this does not

match it to a unique camera. There are additional issues since the metadata

can be manipulated with any common hex editor [46].

3.4 Forensic Implications of the Image Envi-

ronment
The image environment includes the physical constraints upon the image and

camera. This includes violations of physics within an image, such as something

that clearly cannot belong, shadows and reflections that do not exist, geometry

of the image that are impossible and any environmental conditions of the original

scene. In part, this is dominantly in the domain of conventional photographic

32



33

forensic analysis.

The appearance of dust within the noise residue is a contentious issue. Pre-

vious works have cited that dust creates a low frequency spatial response within

the image that is able to be filtered out from our high-pass filter [12] however,

this is not the case. The appearance of dust in images can be modelled as a func-

tion of exit pupil position, window thickness, focal length, f-stop and position

within the image plane [47]. As the f-stop of the camera varies the frequency

response of the dust varies. For lenses of low f-stop, sensor dust appears as low

frequency noise. However, as this number increases high frequency components

readily appear. This has been used successfully as a method to solve the closed

set problem [48] by understanding how the dust changes with f-stop. Thus,

lens dust as opposed to sensor dust is more likely to appear as high-frequency

noise within our noise residues however, the presence of sensor dust cannot be

excluded.

Additional environmental effects are theorised within the noise residue but

have yet to be documented. Such affects include temperature and voltage levels

due to power supply variations.

The appearance of shadows has been used to indicate forgeries previously

[49]. However, it has not been used to prove the uniqueness of an individual

camera. It is proposed that the exposure time will have an effect on the sensor

pattern noise methods mentioned above due to the number of electrons either

self induced or created from photons at a set time. Thus, the lighting within a

scene may be of forensic importance when establishing uniqueness of individual

cameras.

3.5 Conclusion

In summary, three promising areas have been identified from the literature.

There is an intermixing of PRNU and DSN that shows promise in identifying
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cameras uniquely. However, this has not been suitably analysed in the context

of competing objectives. There has not been robust study on the interaction

between PRNU and DSN to determine if DSN is contaminating a PRNU sig-

nal when measuring PNU for camera uniqueness. Likewise, the interaction of

lens effects on the uniqueness of the camera’s fingerprint cannot be discounted.

Finally, there has not been any discussion of the formulation of triage tools for

camera identification, that is, tools that can be run in short amounts of time

with limited resources. Such tools can trade off accuracy for quicker run times

so long as there are secondary tools to process evidence after the fact. This is

the focus of this work. In the next Chapter we will take a critical look at these

identified areas with an exploratory study to frame the novel work which is to

follow.
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Chapter 4

Rethinking Image Sensor Noise

for Forensic Advantage: An

Exploratory Study

4.1 Abstract

Sensor pattern noise has been found to be a reliable tool for providing information

relating to the provenance of an image. Conventionally sensor pattern noise

is modelled as a mutual interaction of pixel non-uniformity noise and dark

current. By using a wavelet denoising filter it is possible to isolate a unique

signal within a sensor caused by the way the silicon reacts non-uniformly to light.

This signal is often referred to as a fingerprint. To obtain the estimate of this

photo response non-uniformity multiple sample images are averaged and filtered

to derive a noise residue. This process and model, while useful at providing

insight into an image’s provenance, fails to take into account additional sources

of noise that are obtained during this process. These other sources of noise

include digital processing artefacts collectively known as camera noise, image

compression artefacts, lens artefacts, and image content. By analysing the
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diversity of sources of noise remaining within the noise residue, we show that

further insight is possible within a unified sensor pattern noise concept which

opens the field to approaches for obtaining fingerprints utilising fewer resources,

with comparable performance to existing methods.

4.2 Introduction

In this chapter we contextualise the work which will follow by taking a closer look

at the existing literature and apply a critical review. Sensor pattern noise (SPN)

is a reliable tool for tracking the provenance of images [12]. Through the use of

high-pass filtering, a unique signal can be extracted from an image consisting

of Photo-Response non-uniformity (PRNU) noise. This signal is unique to the

image sensor and is capable of discrimination across cameras of the same make

and model. This discrimination is because the PRNU is defined as the pixel to

pixel variance in output intensity of an image sensor when illuminated with a

constant light source. The PRNU is the light-sensitive signal caused by Pixel

Non-Uniformity (PNU) within a discrete image sensor. It is statistically unlikely

for two image sensors to have the same PRNU fingerprint. This capability has

been demonstrated with a false acceptance rate of 0.0024% and a false rejection

rate of 2.4% making PRNU comparison an attractive tool where other evidence

can also be used to verify the outcome [8]. The PRNU approach was further

reinforced experimentally by [49] showing that the probability of the wrong

camera with a positive match to an image with the same PRNU is 1/100,000.

Since images in the real world are often never illuminated with a constant

light source, solving the blind source camera identification problem in this man-

ner requires large sample sizes of images specially crafted to ensure scene con-

tamination is minimised. Processing the large sample of images is either time

consuming or requires large amounts of computing resources to ensure efficacy.

These resources are not always available for forensic investigators in the field
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who need efficient tools to quickly and accurately quarantine evidence. There

are further challenges in maintaining chain of evidence for embedded cameras,

such as in contemporary smart phones and the emerging field of wearable tech-

nologies.

Through careful analysis of the current sensor technology in terms of optical

effects, semiconductor physics and the environment image sensors operate in,

this chapter considers the current methodology for measuring the unique PRNU

signal and shows that other options exist for extracting the unique signal that

may provide more accurate results and lead to the development of more efficient

tools.

4.3 Basic operation of an Image Sensor

The fundamental principle of collecting a digital image has not changed since

the first experiments involving selenium-coated metal plates [50]. Since then the

progression from plates to tubes [51] (realising the vision of [52]), to Charged

Couple Device (CCD) arrays [53] [54] and currently to CMOS imaging sensors

(CIS) [55] [26] has seen the quality of the image improve, but the principle

remains the same. Photons are converted to electrons in a PN junction of

a photosensitive material through the recombination of holes and electrons via

the photoelectric effect. In the current state of the art pinned photodiode (PPD)

conversion of photons to electrons is done in the heavily P doped layer of the

PN diode. This is because the PPD architecture results in the depletion layer

being almost the entire width of the P+ region [56].

The PPD is the preferred architecture for modern CIS (Figure 4.1) due to

several significant advantages over its predecessors [10]. The PPD exhibits lower

noise, lower dark current, higher sensitivity and broader dynamic range than

traditional photodiodes or CCDs. As CMOS technology advances we have seen

the image sensor shrink in size. However, due to the limitations of CMOS
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Figure 4.1: PPD CIS with a three transistor circuit built into the pixel. Each transistor is for
a specific function. RST resets the PPD back to full positive voltage at the end of the read
cycle to decrease readout noise. RS is used to select the correct pixel in combination with
the column bus. TX is used to transfer the charge from the photodiode to the readout node.
When a photon P strikes the heavily P doped region P+, the photoelectric effect causes the
voltage to decrease across the PN junction.

Figure 4.2: The Shared Pixel Concept results in four or more pixels sharing common readout
circuitry allowing pixel pitch to approach the 1µm limit. It is theorised that sharing readout
circuitry increases Fixed Pattern Noise in macroblocks of a size matching the number of pixels
sharing the same circuitry.

architecture pixel size has been unable to effectively make pixels smaller than 3

µm without sharing the on-pixel readout circuity between multiple pixels. This

shared pixel concept has allowed pixels to approach the practical limit of 1.0

µm [10]. This technology dominates the current generation of mobile phone

image sensors and results in a biased increase of fixed pattern noise (FPN)

corresponding to the macroblocks of pixels sharing the same transistors.

A principle driving factor behind the inability to shrink the photo-sensor

area is due to the limitations imposed by the signal-to-noise ratio (SNR) [10]. If

consideration is isolated to photon shot noise, the statistical variation of photons

striking the sensor, it can be shown that the absorption of incoming photons
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by a pixel is easily modelled as a Poisson process [10]. These photons are also

characterised by a noise component σph which is known as shot noise:

σph =
√
µph (4.1)

The flux of µph photons results in µe electrons stored in this pixel since the

photoelectric effect causes direct integration of photos to electrons also charac-

terised by a noise component of variance σ2
e , proportional to µe.

Assuming a hypothetical noise-free image sensor and noise-free electronics,

the performance of the image sensor based system will be limited by photon

shot noise. The maximum signal-to-noise ratio can be described as follows:

( S
N
)
MAX

= µe

σe

= µe

sqrtµe

= √µe (4.2)

From this equation, it can be seen that the CMOS process does not de-

termine the minimum size of the pixel. Instead, the number of electrons that

can be stored in the pixel successfully while overcoming any noise issues is the

determining factor [56].

Even with these noise limitations however, efforts to shrink pixels continue

unabated with new technologies combining CCD and CIS techniques with inte-

grated pixel optics to achieve ”subapertures” as small as 0.75 µm in size [57].

Accurate noise models, analysis of image sensors regarding noise, and at-

tempts to reduce noise, are thus important areas of research to maximise the

efficiency of ever-shrinking image sensors.

4.4 Rethinking the noise model for Forensic Ad-

vantage
In this Chapter we are contextualise the existing literature and exploring the

current methodology for improvement to see if additional forensic indicators
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Figure 4.3: The image capture process referred to as the image pipeline contains two discrete
sections, the analogue and the digital. Each element within the pipeline can be exploited
to solve the camera identity problem. The analogue pipe consists of the lens optical system
including the colour filter array and microlens system, the image sensor and the analogue
readout electronics. The digital pipe commences from the output of the analogue to digital
converters (ADC) and involves all the in-camera digital processes the discrete digital signal
transverses before finally being saved as an image file.

may be exposed. Currently, the pixel size is not determined by the limitations

of CMOS technology but rather the physical capacity for electrons within the

N-well region of the photo-detector, be it a photo-gate, photo-diode or pinned

photo-diode [56]. This limitation is seen with current CIS unable to breach the

1.0 µm pixel pitch limit [58] even with CMOS fabrication currently pushing

beyond the 1nm scale. The number of electrons that can fit in the pixel is an

important observation that will be revisited.

An abstract model of noise within image sensors can be developed by first

focusing on what is known as the image pipeline (Figure 4.3). This pipeline

is the process through which an optical image is converted and processed as

an electronic signal to result in a digital image capable of being saved in the

multiple formats commonplace today. Each element of the pipe adds an element

of noise to the signal resulting in an additive noise model [10]. Through careful

analysis of this pipeline, a noise model has been developed (Figure 4.4).

For a single image, the discrete sources of noise can be modelled as an addi-

tive combination of sensor pattern noise, lens optical effects, digital processing
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Figure 4.4: The noise residue model as proposed in our work based on the system noise
equations from [10]. The dark grey boxes indicate sources of noise that can be easily removed.
Random processes are traditionally removed through frame averaging [10] while RAW format
images remove digital processing artefacts [16]. The low-frequency components of the scene
content and all other sources of noise are removed due to the high-pass filter that the images are
passed through to obtain the noise residue in the current unique PRNU signal fingerprinting
method.

artefacts, scene content and random process [10]. To analyse the noise model

for forensic advantage, the focus is linked to the areas that are related to the

image sensor itself, namely the optical effects caused by integrated filters and

lenses, noises caused by semiconductor physics of the sensor and integrated “on-

chip” electronics, and the impact of the environment the sensor operates within.

Such a focus allows the image sensor to uniquely describe the camera and not

the parallel processes an image runs through before saving.

To determine which noise dominates a complete SNR analysis must be un-

dertaken [10]. An SNR analysis is not the focus of this Chapter but can be seen

in Chapter 6.

4.4.1 Optical Effects

To isolate the image sensor within the model, the first step is to ensure all other

contributions of noise from the image pipeline have been eliminated. It is seen

in Figure 4.3 that before entering the sensor, light first must pass through a
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Figure 4.5: A shared pixel concept CIS with CFA elements and microlens attached.

lens system. Lens systems are not without error. Aberrations in multi-lens

design and the lens itself include spherical aberration, coma, astigmatism, the

curvature of field, distortion and chromatic aberration (a particular case of

spherical aberration). These are commonly referred to as the primary or third-

order Seidel Aberrations after the work of Ludwig von Seidel in 1857 [42]. Each

aberration causes the light rays travelling to deviate in some manner from the

optical axis of the lens resulting in optical noise which can be confined to either

a pixel, group of pixels or the whole image. The relevant mathematical proof

behind each aberration has been well explored in the literature, and many texts

have been written on the topic [59].

In addition to the lens system, each image sensor has integrated by design an

optical colour filter array (CFA) to ensure colour images can be obtained from

broad wavelength light-sensitive silicon. To focus light onto the photosensitive

area of the pixel, each pixel also includes a microlens (Figure 4.5). Should any of

these elements be incorrectly manufactured additional noise will be introduced

to the system per the same aberrations as above.

Finally, due to physical properties of light, namely Planck-Einstein’s For-

mula, each discrete photon carries different levels of energy according to its

wavelength λ:

42



43

Eph =
hc

λ
(4.3)

where h is Planck’s constant 6.626 × 10(−34)Js−1 and c is the speed of light.

This energy results in longer wavelengths penetrating deeper into the sensor

before being absorbed [10], affecting photon shot noise.

Optical effects have already been shown to be useful for forensic advan-

tage using discrete lenses and CFA processing artefacts as the identifier. This

identification has been achieved primarily through the use of radial lens distor-

tions [60] and CFA interpolation algorithms [61]. What has not been shown

is how variance in the CFA elements construction may affect penetration of

photons to the sensor substrate below. Additionally, aberrations within the in-

tegrated microlens have yet to be included in the consideration of the overall

noise profile since the sensor contains these elements that physically cannot be

removed without destruction. This integrated microlens provides a point of dif-

ference that may be exploited for forensic advantage or otherwise contaminate

the noise profile of the underlying silicon.

To illustrate the optical effects a side by side comparison of pixel intensities

across a single row of an image taken with two separate lens systems is shown

in Figure 4.6. In this graph, the top figure represents a row 1024 of a 2048x2048

image taken by an integrated lens. The bottom section displays the same row

as taken with a pinhole lens. The pinhole image was taken with a suitable

exposure time to ensure that the amount of light entering the sensor was the

same. It is clear that the optical effects are removed since the variation of the

pixel intensities is decreased in the pinhole image. This is most obvious towards

the centre of the row where the intensity of the pixel is mostly uniform for the

pinhole, however it increases for the lens. Such an aberration would be seen in

an image as vignetting.
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Figure 4.6: Comparing image line 1024 of a 2048x2048 image we see that an image taken with a
lens (top) shows aberration effects with the light concentrated towards the centre of the image.
Replacing the lens with a pinhole (bottom) removes these aberrations as demonstrated from
the decreases in pixel to pixel variance and smooth response across the row.

4.4.2 Semi-Conductor Physics

The basic operation of a photodiode has been described above in section 4.3.

The primary process is to fill the N-well region of the photodiode with electrons

in proportion to the number of photons that have excited the sensor. Under

normal operation, however, the number of photon-induced electrons is combined

with dark current electrons caused by the physical properties of the PN junction.

Three primary sources generate this dark current: irregularities in the silicon

structure, diffusion current due to Fick’s law and depletion region current which

follows Ohm’s Law [62].

The various sources of dark current are complicated to model. This com-

plexity is also in part due to issues with generation in multiple regions as dark

current is not just generated in the photosensitive region. These regions in-

clude the depletion region, the field-free region and the surface of an oxide layer

interface, as well as dark current increasing exponentially with temperature [10].

With much work devoted to the subject, it is often enough to model these
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interactions by simplifying DSN (De−) to the following [10]:

De− =
JDADtint

q
(4.4)

Where AD is the detector area, tint is the integration or exposure time, q is

the charge of an electron q = 1.6× 10−19 coul and JD is the dark current density

which is proportional to:

JD ∝ T 2e
(Et−EG)

kT (4.5)

where k is Boltzmann’s constant, k = 1.38× 10−23 J/K, T is the temperature

in degrees Kelvin and (Et − EG) is the difference in bandgap energies for the

impurity carrier and the primary carrier respectively.

From here it is possible to estimate the dark current at a specific temperature

from a known image sensor at a given exposure time.

These dark current electrons nDARK will be combined with the photon gen-

erated electrons nPEto fill the N-well region:

nPE + nDARK = nWELL (4.6)

Since no silicon wafer is without defect and no two pixels are uniformly the

same it is seen that the dark current will be measurably different between two

pixels, however, is usually treated as uniform and quasi-stable for a sensor as a

whole [63].

At the heart of the operation of an image sensor is the N-well region fill-

ing with electron generated photons thanks to the photoelectric effect at the

depletion region between a PN junction at the N-well region. Since the size

of this well differs from pixel to pixel, and sensor to sensor, it is possible to

create a unique signal or fingerprint from the PRNU noise. This concept is the

work of [12] which focuses on how N-well of each pixel can be filled to an equal
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amount via photonic energy. Each pixel is then read out via the well described

processes and ultimately saved as an image. The slight variation of each pixel

is measured on a pixel to pixel basis due to the differences in the ability of the

PN junction of the photosensitive region to recombine photons.

It has been stated that dark current can be ignored for forensic purposes due

to dark-frame removal [12], the subtraction of a frame exposed without opening

the shutter of the same length of time immediately before taking an image.

However, since the N-well region can be filled with electrons via dark current

generation (equation 4.6), it is theoretically possible to measure a unique PNU

signal in the same manner with the dark current being the excitation source

rather than photons.

Figure 4.7: A side by side comparison of the green layer of the fingerprint obtained using
PRNU through a pinhole (left) and dark current (right). The effects from sensor dust are
clearly visible in the pinhole image while these are absent in the dark current equivalent
section. Kurosawa hot pixels are apparent in the dark current fingerprint as salt and pepper
noise on top of the fingerprint.

Since dark current density increases exponentially with temperature and pro-

portionally with exposure time it is theoretically possible to completely saturate

the N-well region with electrons generated purely from dark current, especially

if the pixel pitch is small, as seen in mobile devices. By controlling these two

parameters, it is proposed that a valid unique fingerprint can be obtained from
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Table 4.1: Correlation of 100 image PRNU reference pattern vs single dark
current fingerprint: Camera One

Temp (○C) 0○ Rotation 90○ Rotation 180○ Rotation 270○ Rotation
20 0.0219 1.30e-03 2.00e-03 1.70e-03
45 0.0408 -8.68e-04 1.28e-05 3.50-05

Table 4.2: Correlation of 100 image PRNU reference pattern vs single dark
current fingerprint: Camera Two

Temp (○C) 0○ Rotation 90○ Rotation 180○ Rotation 270○ Rotation
20 0.0335 1.10e-03 2.00e-03 7.23e-05
45 0.0740 -7.56e-04 1.28e-04 -2.64-08

Table 4.3: Correlation of 100 image PRNU reference pattern vs single dark
current fingerprint: Flipped PRNU

Temp (○C) 0○ Rotation 90○ Rotation 180○ Rotation 270○ Rotation
20 1.30e-03 -8.01e-04 7.67e-04 1.30e-03
45 8.733-04 -1.20e-03 -7.77e-05 -9.31-04

a sensor using dark current electrons alone. Such a fingerprint is demonstrated

in Figure 4.7. Demonstrating the reliability of such a fingerprint in a forensic

context is beyond the scope of this Chapter and will be demonstrated in Chap-

ter 7. However, to demonstrate that the fingerprints are indeed similar some

observations are made, using the toolbox provided in [8] and the method of

dark frame removal discussed in Chapter 7 Within the dark current fingerprint

the Kurosawa hot pixels [32] need to be suppressed for an accurate comparison.

This results in a salt and pepper noise artefact present within the fingerprint.

Additionally, since light is not used to generate the fingerprint there is no con-

tamination from dust as seen in the PRNU reference pattern.

Demonstrating that the dark current fingerprint is correlating to the PRNU

fingerprint a set of correlations is calculated for a single image dark current

fingerprint at T=20○C and 45○C against a 100 image PRNU reference pattern

(Table 4.1). The PRNU reference pattern is rotated 90○, 180○ and 270○ as a

proxy for a deliberate mismatch to ensure correlation is indeed occuring with
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the reference pattern and not an arbitary artefact of the sensor design. This

is repeated for another camera in table 4.2 with the results confirming the

previous demonstration. Finally, to ensure that the correlation is between the

excitation of the silicon and not the read out of the sensor design itself half

the PRNU reference pattern is swapped with the other half of the reference

pattern to create a deliberate mismatch while maintaining colour filter rotation.

These results are shown in table 4.3 with no significant correlation detected.

These results demonstrate our hypothesis that a dark current fingerprint can be

generated which may form as a substitute for the current PRNU methodology.

A full analysis is left for Chapters 6 and 7.

4.5 Micrometer Imagery

To illustrate these concepts we have discussed above a cross-sectional image of

a Sony IMX219PQ [64] image sensor that was taken under a scanning electron

microscope. Using an FEI Dual Beam Helios Nano Lab 600 [65] scanning elec-

tron microscope, two excavations were made into a Sony IMX219PQ CIS. Since

the CIS is conductive, no sample preparation is required before scanning. First,

a layer of platinum is deposited above the area to be excavated to prevent frac-

turing (Figure 4.8). After the platinum is deposited a process of staged cuts are

made using a gallium ion beam to create an excavated area through the sensor

that can be imaged (Figure 4.9).

Using a magnification of 20,000x, a current of 0.17nA and voltage of 10kV,

images are then obtained of the top layers of the integrated CIS containing the

pinned photodiode. Since our study is not concerned with the readout circuitry,

we exclude it from our observations. The process is repeated for a diagonal cross

section to ensure multiple pixels across CFA regions are obtained.

In Figure 4.10 a layered PPD architecture is seen as expected. This PPD

architecture uses a shared pixel concept with multiple transfer points (shown
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Figure 4.8: Platinum (shown here as a growth on top of the micro-array) is deposited on the
CIS to prevent micro-fractures forming during the excavation process.

Figure 4.9: The excavated region of the CIS is shown after the Gallium ion beam has been
used to step out the material present in the region of interest. Several passes are used to
obtain a smooth, polished cross-section.

as TX). Using Energy-dispersive x-ray spectroscopy, the architecture can be

determined in detail. Elements detected in the EDX analysis include Platinum,
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Figure 4.10: A diagonal cross-sectional view of the Sony IMX219PQ CIS. Four pixels are
shown. The pinned photo-diode shared pixel architecture is visible. The Pinning layer is
marked P+.

Carbon, Gallium, Oxygen, Silicon, Tungsten, and Titanium. The presence of

gallium and platinum must be excluded since they are used in the SEM processes

outlined above. However, using reasonable assumptions, the areas of the CIS

in the image as shown can be reverse engineered. An isolation oxide layer

directly below the PN junction made from titanium dioxide is observed as part

of the structure. This TiO2 layer electrically isolates the PN junction from the

underlying substrate and also isolates any photons from further penetrating into

the underlying substrate [10].

To explain the structure and operation we refer to [64]. Light first enters

the sensor via the microlens array and is then filtered using a Bayer filter. The

IMX219PQ sensor has traditional “R, G, and B primary colour pigment mosaic

filters” CFA [64]. These filter elements are not uniform in their construction,

and it is seen that even cells of the same colour have different widths (Figure

4.10). From Equation 4.3 it is clear that this will result in different wavelengths

being filtered out on a pixel by pixel basis rather than just the three principal

components being isolated by the chemical composition of these layers. This

filtering will cause chromatic distortion. While the cause of variation in the CFA

layer is impossible to determine from this image, an indication is given from the

P+ pinning layer directly below. Since the CMOS process manufactures each

layer on top of the previous layer, variations in the layers below will cause issues
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in the layers above. It is seen that the width of the pinning layer is different from

pixel to pixel in the cross-sectional view not just in width but also in length.

This pinning layer will affect the performance of the photosensitive PN region

and even the dark current of each pixel.

Since there are variations between each pixel, it may be possible to isolate

and hence exploit these variations, to create better processes to isolate a unique

fingerprint for the sensor.

4.6 Conclusion
SPN has shown to be a promising area of research for answering provenance

questions relating to imagery. It still suffers from reliance on large data sets

ideally constructed from flat fielded images and a-priori information that is

not always apparent or readily available to forensic investigators in the field.

By rethinking the noise model of a digital camera, SPN can be isolated as an

element that is primarily dependent on the physical silicon that each image

sensor is built from, regardless of technology. From this analysis, it can be seen

that there are alternative ways to create the unique fingerprint that will not rely

on large data sets or mass computational resources. Indeed, by drawing focus

to dark current an opportunity arises to explore the temperature bias which is

present within to see how this affect may impact upon the sensor pattern noise

methods. Before this can begin however, a study as to the origins of SPN must

be undertaken to confirm the source of the noise. Such a microscopic analysis is

the subject of Chapter 5. DSN must then be appropriately isolated within the

current SPN methodologies. This is the topic of Chapter 6. Finally, an analysis

of temperature effects resulting from DSN is presented in Chapter 7.
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Chapter 5

Reverse Engineering the
Raspberry Pi Camera V2: A
study of Pixel Non-Uniformity
using a Scanning Electron
Microscope

5.1 Abstract

In this chapter we reverse engineer the Sony IMX219PQ image sensor, other-

wise known as the Raspberry Pi Camera v2.0. We provide a visual reference for

pixel non-uniformity by analysing variations in transistor length, microlens op-

tic system and in the photodiode. We use these measurements to demonstrate

irregularities at the microscopic level and link this to the signal variation mea-

sured as pixel non-uniformity used for unique identification of discrete image

sensors.

5.2 Introduction

Sensor pattern noise (SPN) has been accepted as a viable method to identify

a unique camera responsible for taking a specific image. These methods rely

on the non-uniform nature of individual pixels, known as pixel non-uniformity
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(PNU), to establish a unique reference pattern. There exists a gap in the lit-

erature which clearly explains the cause of PNU, especially with the purpose

of informing jurors in mind. Sensor pattern noise (SPN) methods based on

PNU are important for intelligence communities, law enforcement communi-

ties and can have additional applications for photographers wishing to establish

ownership without relying on metadata or additional watermarks. While SPN

methods are accepted by the forensic community (an important Daubert crite-

rion)1 there is a risk that a lay juror with no mathematical background may be

confused by the evidence presented in a court setting. This can be confounded

by issues such as the CSI effect where a juror expects Hollywood science to

replace real forensic methodology.

In this chapter we explore some of the physical characteristics of the IMX219PQ

image sensor, providing direct evidence of variation which may cause SPN. We

reverse engineer the design, and analyse three features of an image sensor under

a scanning electron microscope: transfer gate length, variations within the mi-

crolens optic system (LOS) and variations within the photodiode region. It is

hypothesised that the variations within these features are principally caused by

tolerances in the manufacturing process, can visually be seen under significant

magnification, and may contribute to PNU.

5.3 Related Work
The existing literature asserts, without apparent experimental validation, a

blanket statement for the source of PNU [12]. “PNU is caused by the inho-

mogeneity of silicon wafers and other imperfections during the manufacturing

process.” The focus of the literature since has been directed on improving the

method first identified as distinct from identifying the underlying source. A gap
1The Daubert criterion relate to a set of five factors to determine the admissibility of

forensic evidence. The five factors are: a testable theory, peer review and publication of the
theory, a known error rate for methodologies, the existence of operating standards and if it
has reached widespread acceptance. [66].
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exists to address this underlying assumption as to the source of PNU within

the pixel unit of an image sensor. Clarifying this assumption is important for

forensic identification purposes should the literature be challenged in a legal

setting.

We focus on three feature categories which may cause the PNU used to

uniquely identify each sensor. These are: variations within the length of the

transfer gate, within the micro lens optical system (LOS) and within the photo

diode itself. The justification for this approach is given in the related works

below.

[67] provides an analysis of key geometric properties within the structures

of an image sensor and how this affects the charge transfer efficiency (CTE).

Variable CTE values for discrete pixels will cause PNU. The geometric aspects

investigated by [67] include the photodiode size, the transfer gate length and the

sense node (SN) storage area. The SN is also referred to as a floating diffusion

(FD). The two terms are able to be used interchangeably. In both cases, the

region refers to a highly-conductive region without resistive connection to allow

the storage of charge, in effect a capacitor. [67] showed that in all instances of

geometric variation it was the length of these critical geometries which affected

the CTE of the device. Incomplete transfer between photodiode and SN also

causes image lag and noise on an individual pixel [68]. This provides justification

to measure the lengths of the transfer gate as well as the photo diode as a possible

source of PNU.

Differences in the transfer gate are also responsible for dark current varia-

tions. Dark current is generated in the transfer gate by the silicon to silicon

dioxide interfaces or by defects below the surface of the gate itself [68]. We

shown in Chapter 7 the use of dark current for thermal identification of image

sensors. Dark current has also been used in isolation and in hybrid methods

for image identification alongside PRNU [41]. Measuring differences within the
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transfer gate thus provides additional motivation as larger gates will provide

greater surface area interactions for dark current generation.

In Chapter 6 we show the contamination of lens effects within the SPN

methodology. In [69] the non-uniform output of a photodiode was presented. [69,

Fig. 2 c] shows the non-uniform output of the diode while being excited by a

7V laser through various incident angles. The output of the photodiode was

measured to vary between 305mv and 208mv depending on the incident angle

of the laser. Given the non-uniform output demonstrated in this work it is hy-

pothesised that this could be a contributor to PNU in image sensors. Assuming

this is a contributor of PNU in image sensors, it is theorised that this would

manifest via misalignment within the micro LOS of a sensor focusing or filter-

ing photons to different areas of the depletion region of the photodiode. This

would be distinctively different to PNU being caused by variance in doping levels

within the photodiode or the size of the photodiode during manufacture. Such

misalignments should be possible to visually see under cross-sectional analysis

through the use of a scanning electron microscope. This provides justification

to examine the micro LOS of the image sensor.

5.4 Research Methodology

Using a Sony IMX219PQ [70] image sensor as the test subject imaging was

performed under an FEI Dual Beam Helios Nano Lab 600 scanning electron

microscope [65]. The Helios allows imaging down to 1nm at 15kV. Minimal

preparation of the sample is required before imaging since the image sensor is

made primarily of silicon and hence, is conductive to the electron beam. The

IMX219PQ comes as a package board from the Raspberry Pi Foundation. The

sensor is de-constructed to obtain the silicon wafer in isolation to the peripheral

circuit and attached to the FEI imaging platform by way of adhesive conductive

dot. The platform is tilted to 52° to enable imaging and machining by the gal-
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lium focused ion beam. Under magnification, a layer of platinum was deposited

above the area to be excavated to prevent fracturing (Figure 5.1a). After the

platinum is deposited a process of staged cuts were made using a gallium ion

beam to create an excavated area through the sensor that can be imaged (Fig-

ure 5.1b). The gallium ion beam is capable of machining down to 5nm allowing

precise cuts to be made. This is a destructive process.

(a) (b)

Figure 5.1: (a) Platinum (shown here as a growth on top of the micro-array) is deposited on
the CIS to prevent micro-fractures forming during the excavation process. (b) The excavated
region of the CIS is shown after the Gallium ion beam has been used to step out the material
present in the region of interest. Several passes are used to obtain a smooth, polished cross-
section.

Using a magnification of up to 100,000x (400nm scale), a current of 0.086

- 0.17nA and voltage of 5-15kV, images are then obtained of the top layers of

the integrated CIS containing the pinned photodiode and the associated supply

and readout circuitry. Only the top silicon wafer is studied.
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5.5 Data Collection and Analysis

5.5.1 Reverse Engineering

Using [68], Figure 5.2 and 5.3 presents the layers of the CIS with each region

identified. The sensor is a back illuminated sensor (BIS) with a pinned photo-

diode (PPD). The P+ pinning layer can be seen in Figure 5.3. In Figure 5.2

the width of the sensor is measured as approximately 6um. This is consistent

with the provided literature from Sony [71] which also indicates a dual wafer

design. This is confirmed in these images with the bonding surface between the

two wafers indicated in Figure 5.2 at the appropriate distance from the top of

the micro LOS. In the micro LOS the structure can be seen as a main lens,

passivation layer, Bayer filter and then a minor sub lens nestled in between the

nodes of the wire grid. The photodiode region is identified and isolated between

two layers of P doped semiconductor used to prevent cross talk. The isolation

regions are located directly beneath the wire grid used for optical isolation. This

is seen more clearly in Figure 5.3 where the microscope is focused onto the read

out circuit layer of the image sensor.

Using reference images from [68], the Bayer filter elements visible in Figure

5.3 are identified as green and red. This is made out as the red filter elements

are thinner than green with the blue elements being thicker and filling almost

the entire layer. The transfer nodes (TX) are visible within the image. From

here it is possible to identify the individual transfer, M1 reset (RST), M2 source

follower (SF) and M3 column select transistors within the Metal 4 layer. The

wiring for each of these nodes is then routed to the underlying metal layers to

provide read out access to the circuit, most likely on the peripheral or underlying

silicon wafer. The TX wires are seen within the Metal 2 layer while it is assumed

that the Vcc, select and column bus tracks are visible in Metal 1.

Using the information identified above in conjunction with [72] and [68] an
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Figure 5.2: A horizontal cross-section of the IMX219PQ sensor. Each region of the sensor is
clearly identified.

equivalent circuit can be identified for the Sony IMX219PQ BIS pixel unit. From

examining [72] we see that the sensor has the capability to store defective pixels

in one of three modes: single pixels, single adjacent pixels by Bayer element

and individual blocks of 2x4 adjacent pixels. Understanding how the sensor

stores defects provides insight to the readout structure. It follows that the

sensor has a pixel unit comprising of 2x4 photodiodes sharing a single readout

circuit. Using [68] the pixel unit is comprised of a circuit of eleven transistors

for every eight photodiodes. Using the familiar nomenclature of average number

of transistors per pixel we see the IMX219PQ is a 1.375T (11 transistors per 8

pixels) design. This is indicated in Figure 5.4.

We suspect that the clover leaf pattern is utilised as per previous Sony

iterations, in particular the sensor (Sony IMX145) in [68]. Unlike the equivalent
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Figure 5.3: A secondary cross-section of the IMX219PQ sensor. The structure of the photo-
diode and circuit is identified within the image.

Figure 5.4: The equivalent circuit for the IMX219PQ pixel unit. Inset shows the scanning
direction for read out of the IMX219PQ sensor when identifying a 2x4 pixel defect on the
sensor taken from [72].

circuit shown in [68, Fig. 9] we show only two sense node locations corresponding

to the sense node in each of the two pixel subgroups noting the work of Fontaine

in [68, Fig. 10] showing these two locations in the centre of the clover leaf. We

note that the charge for each photodiode when read out will be distributed on
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both of these nodes in parallel due to Kirchoff’s Current Law. The readout

circuitry is an important distinction to clarify as it forms a significant source of

dark current. Sensors that demonstrate a different readout structure (3T, 4T,

2T, 1.75T) provide a possible source of difference for forensic identification. The

dark current of such sensor configurations should be measured in future work.

The clover leaf pattern should also be confirmed by imaging the bottom of the

sensor.

5.5.2 Transfer Gate

Measurements were taken of the readout node of the photo diode using the

SEM built in measurement tool. These were then verified manually by printing

images to scale and measuring by hand. These results are shown in Table 5.1.

(a) (b) (c)

Figure 5.5: The length of six transfer gates are taken across three separate pixel units. For
the image above, odd gates are green, even gates are red. (a) Transfer gates 1 and 2. (b)
Transfer gates 3 and 4. (c) Transfer gates 5 and 6.

Table 5.1: Transfer Gate Length

Pixel SEM Measure (nm) Manual Measure (nm) Average (nm)
1 305 308 307
2 322 329 326
3 370 370 370
4 363 364 364
5 379 380 380
6 366 378 372
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There is variation with all transfer nodes measured. The mean of all six

transfer nodes is 353nm. Measuring the variance to the mean from each transfer

node we obtain a double sided tolerance of +27nm and -46nm. Extrapolating,

this leads to a feature size of 350nm with an engineering tolerance of +/-50nm.

The polysilicon layer has an average thickness of 160nm with metal 4 being ap-

proximately 280nm in thickness. This is consistent with the 130nm lithography

process design rules in [73] noting we have labelled our metal layers in reverse

order. This measurement is not consistent throughout the layer with the layer

increasing and decreasing in thickness throughout the images obtained. This

thickness variation will cause minor geometric changes to the features of the

circuit. These thickness variations will become more pronounced in top layers

as the variations stack.

5.5.3 Micro Lens Optical System

Two Green-Red Bayer elements are overlaid in Figure 5.6. In 5.6a the microim-

agery is presented for the two immediate, same colour, neighbouring elements

with noticeable variations in the structure of these two identical Bayer elements.

The stained blue shows a large segment missing to the right whereas the stained

yellow is slightly thicker. The cropped images are run through a Canny edge

detector in FIJI [74] to provide a binary gate to compare the two filter elements

against. This result of the Canny edge detector is presented in 5.6b. White is

where element 1, previously tinted yellow, is presented. Dark grey is element 2

previously tinted blue. Dark white is where both elements are, and light grey is

where only element 1 is present. This shows the contrasting differences between

the two CFA elements with a hole in element 2 positioned above the optical

block (metal grid). These minor variations are likely to create optical aberra-

tions known as Seidel aberrations affecting where individual photons will strike

the depletion region of the photodiode [17, 42].

The Bayer filter is not the only region that is observed to have irregularities
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(a) (b)

Figure 5.6: (a) Overlay of the two Green-Red Bayer filter elements. (b) The overlay of the
two Green-Red Bayer filter elements as a binary image using FIJI [74].

which will cause optical aberrations. Sectioning off the top layer of the micro

LOS provides access to the passivation layer in between the micro lens and the

Bayer elements. Holes in the passivation layer are visible directly above the wire

grid elements as shown in Figure 5.7. This is another defect within the structure

of the sensor that is not uniformly distributed on every pixel. Once again, the

formation of holes within the upper layers of the micro LOS are likely to cause

aberrations [17, 42].

5.5.4 Photodiode Variations

Four photodiodes and their length are shown in Figure 5.8. We note the pres-

ence of a charging artefact due to the highly conductive metal layers causing

a smearing effect into the photodiode region on the image. Measurements are

taken well away from this artefact to avoid any contamination. Measurements

are taken from the SEM and then confirmed via manual scaling as per section

5.5.2. These measurements are displayed in Table 5.2. All measurements show

variation from photodiode to photodiode.

The mean photodiode length is measured as 894nm with a range of +/-14nm.

The nominal pixel length is stated as being 1120nm (1.12um) [72]. Measuring

the length of the isolation in between the photodiode regions we can obtain a

measurement for the average pixel length. The P dielectric isolation is manually
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Figure 5.7: Sectioning the top lens layer of the IC reveals the passivate later above the Bayer
elements below the micro lenses. Bubbles are evident above the wire grid in random locations
on the surface of the chip.

Table 5.2: Photodiode length

Photodiode SEM Measure (nm) Manual Measure (nm) Average (nm)
1 Gr 910 899 905
2 R 890 873 882
3 Gr 880 879 880
4 R 910 905 908

measured as above and displayed in Table 5.3. A mean measurement is obtained

as 240nm. Adding the two mean measurements together obtains an average pixel

length of 1134nm (1.13um). The four pixels in Figure 5.8 are manually measured

to obtained a length of 451nm. This provides a mean measurement of 1127.5nm

(1.13um). These measurements indicate that the pixel length is slightly larger

than stated in the documentation but, likely within manufacturing tolerance of
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Figure 5.8: Four photodiodes from two separate pixel units compared for length.

1%.

Table 5.3: Isolation Length

P Isolation Manual Measure (nm)
1 Gr 232
2 R 234
3 Gr 264
4 R 228

The variation in sizes across pixels is likely to be a significant contributor

to PNU on the sensor as different sized photodiodes will have different light

sensitivity and dark current behaviour.
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5.6 Discussion

Dark current and Photo Response Non-Uniformity noise are leading candidates

in SPN methods for identification of discrete image sensors from a candidate

photo. [41] and [12] are both indications of how this method can be used with

great success. The defects shown in Sections 5.5.2 and 5.5.4 are the features

within the image sensor and the electrical circuit which are likely candidates to

cause the non-uniform characteristics of both Dark Current and Photo Response

non-uniformity used for unique identification.

Lens aberrations are known to link images to cameras [60]. Shown in Section

5.5.3 are irregularities in the micro LOS that are inseparable from the image

sensor. Lens aberrations normally link an image to a LOS that is able to be

separated from a camera. In the case presented here, the defects within the

micro LOS are inseparable from the sensor itself and as such should provide a

forensic link to the image sensor as opposed to an external LOS.

It is important to note that when we and the literature have referred to

manufacturing defects we are not referring to quality control issues in the typical

sense. Where defects would normally cause the scrapping of the sensor or entire

wafer, the defects we discuss are minimal and still allow the sensor to operate

within the designed engineering tolerance. It is this variability within tolerance

that is being exploited here for forensic identification. While this trace is treated

as unique it is also important to note that this has not been proven. The largest

scale test of this method has been done by [8] where it was found, using the

current state-of-the-art method, PCE identification has a false acceptance rate

of less than 3 in 125,000. As this work has been conducted with the juror in

mind, it is important to highlight this distinction for the purposes of the Daubert

criterion.
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5.7 Conclusion and Future Work
In this chapter we have demonstrated pixel non-uniformity within the silicon

structure of the image sensor at the microscopic level. We have demonstrated

discontinuities between discrete layers within the image sensor. While these

discontinuities do not affect the overall image performance capabilities of the

sensor they do contribute to a layer of additive noise known as PNU. Partic-

ular attention has been paid to the transfer gates and the associated read out

circuitry. This work has drawn attention to the variability of physical charac-

teristics of the electronic circuits on an imaging sensor to visualise how sensor

pattern noise may, at least in part, be explained. We have not considered the

variation in semiconductor performance due to chemical-level variability such

as doping concentration and contamination, nor have other read-out circuitry

configurations been analysed, which are matters for future study. Our explo-

ration of the physical dimensional variability may also be useful in explaining,

in part, the origins of sensor pattern noise to a lay audience.
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Chapter 6

An Analysis of Optical
Contributions to a
Photo-Sensor’s Ballistic
Fingerprints

6.1 Abstract
Lens aberrations have previously been used to determine the provenance of an

image. However, this is not necessarily unique to an image sensor, as lens sys-

tems are often interchanged. Photo-response non-uniformity noise was proposed

in 2005 by Lukáš, Goljan and Fridrich as a stochastic signal which describes a

sensor uniquely, akin to a “ballistic” fingerprint. This method, however, did not

account for additional sources of bias such as lens artefacts and temperature.

In this chapter, we propose a new additive signal model to account for arte-

facts previously thought to have been isolated from the ballistic fingerprint. Our

proposed model separates sensor level artefacts from the lens optical system and

thus accounts for lens aberrations previously thought to be filtered out. Specifi-

cally, we apply standard image processing theory, an understanding of frequency

properties relating to the physics of light and temperature response of sensor

dark current to classify artefacts. This model enables us to isolate and account

for bias from the lens optical system and temperature within the current model.
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6.2 Introduction
Much work has been done to solve the open and closed set camera identification

problem [12, 16, 40, 43, 48]. One of the most promising methods used to iden-

tify an image uniquely to not just a particular make or model of camera but

the unique image sensor itself is that of photo-response non-uniformity noise

(PRNU) or sensor pattern noise (SPN) [12]. While blind source camera identi-

fication has been used for some time as a reliable and accepted method for legal

purposes [33], there are untested scenarios within the existing literature that

provide a level of uncertainty. It is widely accepted best practice to identify

any source of error within forensic tools and provide methods for their miti-

gation [75]. There still remains questions regarding the science of the method

due to high-frequency components of the image remaining within either the im-

age fingerprint, the camera reference pattern or both. These high frequency

components include but are not limited to image compression artefacts [43],

dark current [10], amplifier noise [10], and lens and optical effects [16] including

dust [48]. These high frequency components can corrupt the fingerprint if their

energy dominates the unique signal and are significantly uncorrelated to the

sensor. In this chapter we aim to isolate a source of error from blind source

camera identification and, applying principles of signal processing, demonstrate

the energy distribution to the various traces that the SPN method is capable of

isolating.

While much is known about the mathematical design of lenses, only recently

have image analysts begun to study their unique geometric effects to solve the

camera identity problem [60, 76]. Lens aberrations have successfully been used

in image linking [60] and identifying copy paste forgeries [76]. This is because

lenses create artefacts in an image known as Seidel Aberrations [42]. These

aberrations describe how each ray of light travelling through a lens deviates in

some manner from the optical axis and is unique to a lens system due to the
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Figure 6.1: The noise residue model as proposed in our work based on the system noise equa-
tions from [10]. The dark grey boxes indicate sources of noise that can be easily mitigated.
Random processes are mitigated through frame averaging [10] while RAW format images
remove digital processing artefacts [16]. Camera Noises introduced through computer algo-
rithms such as demosaicking, dynamic range adjustments and downsampling are controlled
through correct choice of camera hardware values prior to imaging [10]. The low-frequency
components of the scene content and all other sources of noise are removed due to the high-pass
filter that the images are passed through to obtain the noise residue.

multiple lenses used in combination [59]. While this method is successful at lens

identification, it provides little information about the specific image sensor in

question since lens systems are easily substituted.

While an abstract model of noise within image sensors has been developed

as seen in Figure 6.1, to determine which source dominates a complete signal-

to-noise ratio analysis must be undertaken [10]. In this chapter, we begin this

work by limiting ourselves to evaluating the contribution of the lens within a

noise residue to ascertain if contamination is possible with lens substitution.

The next section provides an overview of how the noise residue is obtained and

describes the work that has already been done in isolating the contaminating

effects within this fingerprint. In Section 6.3 we describe a new noise model

for the noise residue based off the work of [10] that is more inclusive of the
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Figure 6.2: The additive noise model as proposed by Lukáš et al in their seminal work [12]

high-frequency leakage seen in [12]. We describe our lens isolation experiments

in Section 6.4 in which we use a physical filter to remove all contributions from

Seidel aberrations. The results of these experiments are discussed in Section 6.5

before concluding in Section 6.6.

In the sections which follow we consider all operations as element-wise matrix

operations unless specifically expressed otherwise. Boldface is used to denote

m × n vectors. The product between two vectors is assumed to be the vector

product x ⊙ y = ∑n
i=1X[i]Y[i] where i is the i’th element of the vector. ∣∣X∣∣ =

√
X⊙ <X > is used to denote the argument of the vector X, and the mean value

of the vector X is indicated by<X >. Correlation between two vectors is the

cross correlation:

corr(X,Y ) = (X − <X >) ⊙ (Y − <Y >)∣∣X − <X >∣∣ ⊙ ∣∣Y − <Y >∣∣

6.3 Background

We model the signals contained within a single image as an additive signal model

based on [10] and shown in Figure 6.1. This expands upon the model proposed

by [12] as shown in Figure 6.2.
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Quoting levels of noise in terms of electrons at the level of image sensor

output, the noise magnitude is the root mean square value and the sources

are expressed as the root sum of the squares and added in quadrature where

appropriate we obtain the following:

<NSYS >=
√
< n2

1 > +...+ < n2
i >

+...+ < n2
N >

Where < n2
i > is the variance of noise source i and <NSYS > is the standard

deviation measured in RMS units for the entire system.

Substituting for the various sources of noise identified in Figure 6.1 :

<N2
SYS> = < n2

RANDOM > + < n2
IMAGE >

+ < n2
DIGITAL > + < n2

LOS >

+ < n2
SPN >

(6.1)

Since SPN is the signal we wish to isolate we deviate from traditional noise

models to include the image as a noise source where nIMAGE is the high and

low frequency components of the scene being imaged, nDIGITAL are the noise

sources due to the digital processing pipeline, nLOS is the Lens Optical System

(LOS) , nSPN is the contribution from SPN being the addition of dark current

(FPN) and PRNU:

< n2
SPN > = < n2

FPN > + < n2
PRNU > (6.2)

and nRANDOM is the sources of noise able to be mitigated through frame

averaging represented by:
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< n2
RANDOM> = < n2

SHOT > + < n2
A >

+ < n2
ADC > + < n2

1
f

>

+ < n2
RESET >

(6.3)

For our usage, we agree with the findings of [10] as shown in our theoretical

model of the noise sources contained within the noise residue after following the

de-noising method in [12].

We break down the signals within our of noise residue as being comprised

of three main areas: SPN or those due to the sensor, those due to the LOS,

and the high-frequency components of the scene content. We illustrate this in

Figure 6.3. From the sensor, we follow the model as proposed in [12] and break

the Sensor level noise down to PRNU and Dark Current. For ease of modelling,

we also include dust on the sensor as per [12] noting that dust modifies the

PRNU response since light is blocked from the sensor. The LOS is comprised of

two levels. These are lens dust or misalignment, and Seidel aberrations caused

by design errors during lens manufacture. Both aspects are high-frequency

components only due to the filter f that the system is run through to obtain

the noise residue.

To simplify the model, acknowledging we introduce a source of possible error

in doing so, we focus our attention on the sections of the model that positively

correlate with an individual image under test (IUT). [12] using [10] identified

that the only sources of noise not reduced through frame averaging were dark

current and PRNU. This was further refined in [16] to eliminate compression

level artefacts through the use of raw images. LOS aberrations and components

of the scene remain (Figure 6.3). The scene components are limited to only the

spatial high-frequency components since the image has been high-pass filtered.

The model when a reference pattern is compared to a IUT fingerprint is therefore
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considered as follows:

<N2
SYS> = < n2

SPN > + < n2
LOS >

+ < n2
Wref

> + < n2
w >

(6.4)

Where nWref
is the contribution of high-frequency elements from the refer-

ence pattern due to the insufficient suppression from frame averaging and nw is

the high-frequency scene components of the IUT. Given that these two sources

are uncorrelated we further reduce our model to:

<NSYS
2> = < n2

SPN > + < n2
LOS > + < n2

V > (6.5)

From this model, we can determine the contribution of the LOS aberrations

within the system to the correlation energy <N2
SYS >. We achieve this through

the use of a physical filter (a pinhole lens) thus removing LOS aberrations from

the system altogether.

<N2
SYS> = < n2

SPN > + < n2
V > (6.6)

Given < nV > is uncorrelated, the resulting correlation will be directly pro-

portional to a combination of FPN and PRNU. We assume the definition of

this as SPN as per [10]. This is the basis of the original method as seen in [12]

with differences as explained here. [12] acknowledged that pattern noise is any

noise component that survives frame averaging and focused on only one part of

this theoretical model, pixel non-uniformity noise (PNU). From our use of the

model as proposed in [10] it is clear that lens aberrations are involved unless

otherwise filtered, which frame averaging does not achieve. [12] assumed the

positive match from their method was directly proportional to PNU defined as

a sub layer of PRNU caused by the different sensitivity of pixels to light. We
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Figure 6.3: The groupings of noise remaining in our noise residue. The grey indicates the
sensor specific noise.

do not agree as shown from the theoretical break down above hypothesis that

Dark Current and the LOS must be included with appropriate weight.

Dark current is generated in multiple places within an image sensor. Gener-

ally, three sources of dark current contribute to the total generated by a sensor.

These sources are typically the depletion region through the swapping of minor-

ity carriers, the diffusion of carriers in the field-free region at saturation (drift

current) and on the surface of any oxide layer interface. A complete study of

dark current is beyond the scope of this chapter but can be read in [77]. Previous

work by [32] has presented a hypothesis that dark current could be an effective

tool for matching images to a source camera. However, this work is often re-

duced to pixel defects for matching images as demonstrated in [40]. We propose

that even with pixel defects isolated and removed, dark current is a unique trace

in itself. This philosophy has previously been proposed. In [41] the concept of

a hybrid model was explored where the individual traces of PRNU and DSN

were combined to create a new method that ultimately “had higher discrimina-

tion capability than the method using pixel non-uniformity when the number of

recorded image [sic] was small”. By isolating lens effects and dark current from

the PRNU trace we illustrate why this is the case, further demonstrating the
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need for more work to understand the science behind the sensor pattern method

for uniquely solving the blind source camera identification problem.

6.4 Methods

Six Sony IMX219PQ CMOS image sensors (CIS) with integrated lenses were

used in our analysis. The lenses were carefully removed from the sensor and

placed into a 3D printed jig. The jig was designed explicitly so that each image

was slightly out of focus. This assists in removing high-frequency image com-

ponents from our analysis. Only three sensors were used in our experiments as

three sensors were damaged during the lens removal process. This gave us six

lenses and three image sensors. Images were taken of a fixed intensity white

LED light source evenly focused through a sheet of white opaque perspex to

create an evenly illuminated light box. This suppressed contamination from

high-frequency image content being passed through the high-pass filter of our

PRNU estimator.

Pinholes were manufactured using 3D printing. A 1.5mm diameter aperture

was designed at a distance of 3mm to ensure the focal ratio of the lens was kept

consistent at f/2.0. This enabled intensity of the light striking the sensor to be

kept consistent across the pinhole and standard lenses resulting in a consistent

integration time of 1/1008 seconds. Ensuring integration time was consistent

meant that no scaling effects occur between pinhole and lens image sets, and

keeps dark current constant. The temperature was kept at a constant T=30 ○C

to further ensure the effects of dark current were controlled. Varying either

the exposure light intensity or the temperature should result in an increase of

dark current, hence, it is important that these variables are kept constant for

comparison.

Each image was preprocessed before filtering. We separated each colour

filter array element into a separate array. Each image was cropped to 1024x1024
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Figure 6.4: The overlapping method to reduce edge effects from the wavelet coring method.
The dark regions in each square (left) indicate the calculated region of the filtered noise residue
retained in each pass corresponding to their effecting location in the resulting noise residue
(right). The method results in m+1 x n+1 passes being performed as opposed to the original
m x n.

image offset by 38 pixels from the top left-hand corner. This enabled us to obtain

a broad cross-section of the image and would emphasise any lens effects such as

vignetting. The resulting four arrays were turned into zero mean signals before

being processed by the wavelet coring filter [49]. We used the same wavelet

coring filter as proposed in [12] with one minor difference. Instead of using

advancing squares in the m x n MAP estimate we used overlapping squares,

doubling the number of calculations required. We then rejected the outer edges

of the m x n pixel arrays to ensures edge effects are discounted from the final

analysis. The m x n arrays are then stitched back to create the final PRNU

analysis for each CFA array. This process is shown in Figure 6.4. Finally, we

merge each PRNU estimation for each CFA array back to a single array for

the PRNU estimation of the entire sensor. We then correlate each CFA to its

corresponding CFA in the image under test. Our final correlation value is then

taken to be the average correlation value across each of the four CFA sub arrays.

150 images were taken using each of the three cameras with each of the six

lenses attached in turn. From each set of 150 images, 50 were randomly divided

into a reference pattern, while the remaining 100 formed an image set to correlate

against the reference patterns. An additional set of images was captured at the
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Figure 6.5: Box plot of all cameras reference patterns of the lenses correlated against lens
image sets not corrected for dark current.

same exposure time, temperature and illumination using a pinhole designed to

have the same f-number as the original lenses. This gave us seven sets of images

per camera and 21 discrete reference patterns.

6.5 Results and Discussion
Results of the lens image sets (3600 images) correlated against each of the seven

reference patterns are shown in Figure 6.5. Figure 6.6 shows the result of these

same reference patterns correlated with the remainder images captured using

the pinhole lens on each camera (300 images). Only images known to be from

that camera are shown in these figures as uncorrelated results are uniformly

distributed about the origin and hence are omitted for clarity.

The results in Figure 6.5 show the lens reference patterns with similar means

and ranges. Our results are approximately 0.02 larger than those first reported

in [12] which we attribute to the additional steps taken to eliminate edge ef-

fects in our denoising filter. Each of the lens sets shows statistically similar

results. The range, mean, maximum and minimum values are consistent within

an overall range of 0.025 to 0.031 across the six lenses. The pinhole set, how-

ever, has a range of almost twice that at 0.040 with the maximum value below

the minimum value of any one lens. This suggests statistical invariability across
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Figure 6.6: Box plot of pinhole image reference patterns correlated against pinhole image sets
not corrected for dark current.

lenses manufactured of the same type, however, reinforces the hypothesis that

high-frequency lens artefacts are included in the noise residues used to create

both individual fingerprint and reference patterns.

The lens sets have a median value of 0.085 and mode of 0.083. There is

a difference of less than 0.007 within the means for the lens sets showing that

they are consistent. The pinhole set has a mean of only 0.062. This is a clear

difference between the average means of the lens sets and the mean of the pinhole

set at 0.023, but the pinhole is still capable of statistically matching to the right

camera. The pinhole correlation showed a broader range than each of the lens

sets with a majority of the data falling within the interquartile range and skewed

towards the higher values, whereas each of the lens sets is skewed towards the

lower end of the range.

An interesting observation is that the uncorrelated pinhole image set is posi-

tively skewed whereas the correlated lens image sets are negatively skewed. This

observation extends to figures 6.6 and 6.7 with the exception being the pinhole

image set matched to a pinhole reference pattern corrected for dark current

with dark frame removal in Figure 6.8. It may be possible to identify or profile

a device such as a pinhole by comparing means of statistically significant sample

sizes in this manner.
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Comparing Figure 6.5 to Figure 6.6 it is apparent that the means of the

lens reference patterns reduce to be in line with the pinhole reference pattern

when correlated against pinhole image sets taken from the same camera. This

aligns with the hypothesis that the lens reference patterns contain additional

signal energy from the high-frequency components of the lens passing through

the signal filters in the process of obtaining the noise residues.

Using the average correlation from the lens sets in Figure 6.5 (since they

are consistent) and Equation 6.5 above we can calculate the overall correlation

energy of the SPN with the effects of the lens included.

<N2
SYS> − < n2

V >= < n2
SPN > + < n2

LOS >

= 0.0865
(6.7)

Using the averages of all results contained in Figure 6.6 we are able to

calculate the correlation energy of the SPN without effects of the lens present:

<N2
SYS> − < n2

V > − < n2
LOS >= < n2

SPN >

= 0.0666
(6.8)

Substituting this result back into 6.5 we can obtain a result for the correlation

energy of the LOS alone.

0.0666+ < n2
LOS > = 0.0865

< n2
LOS > = 0.0199

(6.9)

This figure corresponds to the effects of the LOS based on measurements

with dark current influence in the sensor.

Since many modern-day cameras correct for dark current, each of the images
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Figure 6.7: Box plot of all camera reference patterns of the lenses correlated against lens
image sets corrected for dark current.

Figure 6.8: Box plot of pinhole reference patterns correlated against pinhole image sets cor-
rected for dark current.

was also corrected for dark current through the use of a dark current frame

removal. This was to ensure dark current was not contaminating our results.

As seen in Figures 6.7 and 6.8 the range of the correlation scores are reduced

however the overall result remains. The correlation is significantly reduced upon

removal of the lens.

The pinhole set with dark current removal shows good uniformity with the

mean centred about the range of the set. Since lens effects and dark current

have been removed, the correlation should be acting upon only the correlated

PRNU within the image. This shows a Gaussian distribution as expected with

the mean centred around the mean of the lens results. When our reference

86



87

pattern is constructed only with pinhole images and is correlated with images

taken using a lens we are no longer correlating against the high-frequency lens

artefacts seen within the lens reference patterns. This is a clear result from

Figures 6.6 and 6.8.

We can use this result to further estimate the effects of dark current within

the correlation energy by repeating the calculations above and also check the

figure we have obtained for the LOS.

Using the average correlation from the lens sets in Figure 6.7 (since they

are consistent) and Equation 6.5 above we can calculate the overall correlation

energy of the PRNU only with the effects of the lens included but without dark

current.

<N2
SYS> − < n2

V >= < n2
SPN > + < n2

LOS >

= 0.0844
(6.10)

Using the averages of all results contained in Figure 6.8 we are able to

calculate the correlation energy of the PRNU alone:

<N2
SYS> − < n2

V > − < n2
LOS >= < n2

SPN >

= 0.0644
(6.11)

Substituting this result back into 6.5 we can obtain a result for the correlation

energy of the LOS alone.

0.0644+ < n2
LOS > = 0.0844

< n2
LOS > = 0.0200

(6.12)

Figure 6.6 corresponds to the effects of the lens only within the sensor and
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is consistent for our measurements with dark current as calculated in Equation

6.9. Comparing the results of Equations 6.7 and 6.8 with Equations 6.10 and

6.11 we see that dark current (FPN) corresponds to a contribution of 0.0022

to a correlation of 0.0865.

Given these values represent power correlation amplitudes we are able to

convert them into signal to power ratio terms using the following:

SNPdB = 10log10
Psignal

Ptotal

(6.13)

Where the identifier is either PRNU, dark current or combination of them

both. These values are summarised in Figure 6.9.

It is possible to treat each of PRNU, dark current and the LOS as unique

identifiers hence, the signal. Conversely, we can think of the high frequency

image content within our residues as the noise. Switching our definition of the

signal and noise in such a manner enables us to calculate SNP values for each

identifier in a forensic context. These values are summarised in Figure 6.9. We

see that the uncorrelated high-frequency components of the reference patterns

dominate with a signal to power value of 91.4% of the total signal power. PRNU

has the strongest of the individual identifiers with a signal to power value of

6.44% however, the highest identifier value corresponds to the combination of

PRNU, dark current and LOS with a value of 8.7% of the total power of the

signal. This is clearly contrary to assumptions made in [12] that the method

is matching only to the PNU as a subsection of PRNU since the best match is

made with a combination of all the identifiers measured. We can also see that

PRNU accounts for nearly 75% of the extended fingerprint’s power. This is

compared to the LOS at 23% and Dark Current at only 2.5%. This observation

provides an explanation as to why the work of [12] was successful although all

sources of correlated power were unaccounted for in their method.
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Figure 6.9: Signal power expressed as a ratio of total power levels of each identifier contained
within our extended fingerprint.

Dark current was measured to be an appreciative 0.2% of the total range of

the image when held constant at T=30 ○C. This is expected to increase with

temperature as seen by the theoretical models in [10] and will be explored in

Chapter 7. It is also noted that should the intensity of light decrease the amount

of power that the dark current has compared to other sources of power in the

image would inversely increase. This has not been experimentally shown due

to limitations of the lighting apparatus used when conducting this initial study

but, we note the theory illustrated in [10]. By removing the lens, we were

able to eliminate the source of stochastic variance and isolate the deterministic

component of the lens optical system and measure the contribution of the LOS

to be 2.0%. We note that some variance due to lens aberrations will still be

present due to the involvement of the micro-lens array on the sensor itself.

Some sensors use a dual micro-lens design. These aberrations from the micro-

lens are unique to each sensor and hence form a significant source of the PRNU.
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Likewise, some aspects of the camera noise [10] is unique to each camera but

were excluded from our noise residue model since we were only concerned with

the image sensor. In reality, since these camera noises are unique their effects

may be seen within a sensor fingerprint but have not been attributed above.

While cameras of a similar make and model have been evaluated here to

eliminate possible sources of experimental error it is worth noting that we expect

that other cameras should exhibit similar breakdowns with the amount of power

scaling in proportion with the quality of the sensor. Scientific grade sensors with

low dark noise by design should show very little dark current contamination

whereas we expect low grade CMOS cameras for integrated mobile applications

designed without built in dark current correction to have some of the worst. This

expectation is consistent with the results shown here. The Sony IMX219 sensor

used in this work has built in dark current correction at the silicon level [70]

, however, still shows evidence of a contribution, albeit small, of signal power

attributed to this forensic trace.

6.6 Conclusion

While we do not dispute that the method first proposed by Lukáš et al is

capable at blindly identifying images uniquely to their source camera, our work

has shown that there is more to understand behind this methodology than

first described. The additional factors are acting upon the correlation seen

need to be understood before it can be used as a reliable methodology to solve

the blind source camera identification problem for legal purposes. We have

shown that dark current and the LOS contribute a non-insignificant amount

of energy to the correlation. While an amount of energy in the correlation is

contributed by the lens aberrations, the method shown here is not statistically

capable of uniquely identifying a particular lens of similar design. An area

of counter forensic method however is left as a proposal to disrupt the SPN
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fingerprint methods by designing a lens with extreme high-frequency aberrations

to corrupt the SPN. This reinforces the initial findings of Knight et al. Herein,

our method demonstrates an additional protocol step of lens isolation using

a pinhole camera should the suspect camera be available to the investigator.

This chapter demonstrates that this critical step of image verification should be

taken to increase the certainty of a positive match particularly in the context of

charges relating to the production of photographs using professional grade dSLR

cameras where multiple lenses are interchangeable. Such a step can increase

the certainty of a positive match and aim to verify the results of the forensic

investigation. Forensic investigators must be aware of the result of this step

demonstrating the significance that the lens system may play particularly when

using SPN to solve the open set blind source camera identification problem.
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Chapter 7

Thermal Effects of Dark Current
on Blind Source Camera
Identification

7.1 Abstract

The state of the art method for fingerprinting digital cameras exploits the non-

uniform output of an array of photodiodes due to the distinct construction of

the PN junction when excited by photons. This photo-response non-uniformity

(PRNU) noise has shown to be effective but ignores knowledge of image sensor

output under equilibrium states without excitation (dark current). The dark

current response (DSN) traditionally has been deemed unsuitable as a source

of fingerprinting as it is unstable across multiple variables including exposure

time and temperature. As such it is currently ignored even though studies

have shown it to be a viable method similar to that of PRNU. We hypothesise

that DSN is not only a viable method for forensic identification but, through

proper analysis of the thermal component, can lead to insights regarding the

specific temperature at which an individual image under test was taken. We also

show that digital filtering based on the discrete cosine transformation, rather

than the state-of-the-art wavelet filtering, provides significant computational

gain albeit with some performance degradation. This approach is beneficial for
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triage purposes.

7.2 Introduction

In this chapter, we examine the relationship between temperature, dark current

(DSN) and its effect on the accepted sensor pattern noise (SPN) methods using

a discrete cosine transformation (DCT) filter instead of the computationally

intensive wavelet filter. We achieve this using a lens cap applied during our

image capture process to eliminate the interaction of light with our image sensor.

We calculate the correlation across the temperature range of 10°C to 50°C in

5°C increments before calculating a theoretical model for each of the cameras

used in our experiments. This model is then used to contrast the photo-response

non-uniformity (PRNU) SPN method against a DSN SPN-only method similar

to the hybrid SPN method in [41].

A reliable method of linking media to their source camera is through the

analysis of pixel non-uniformity (PNU) sensor noise to generate a photo-response

non-uniformity (PRNU) trace often referred to as a fingerprint [12]. When

tested across the limited range of -7.9°C to 29.5°C it has been observed that

this method is not affected by temperature [13]. [12] goes as far as to state that

PNU “is not affected by ambient temperature or humidity” due to the simple

fact that PRNU is the dominant trace component of PNU.

Sensor Pattern Noise (SPN) methods for solving the blind source camera

identification problem has already been shown to be a valuable tool for both

insurance providers and law enforcement. In [78] it was shown that SPN for a

scanned image differs to that of a genuine photograph. Such a method has appli-

cations for insurance fraud when detecting scanned images vs genuine images of

goods; for example when attempting to prove ownership. PRNU has previously

been ruled out as a useful tool for policing insurance fraud concerning vehicle

collisions due to the inability to link a camera to a particular vehicle [79]. In [41]
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five separate cases are given which shows the practical application of SPN meth-

ods for law enforcement ranging from sexually based offences to those resulting

in death.

Even though SPN is considered to be a robust and mature tool for linking

images to cameras, has undergone significant peer review, has calculable poten-

tial error rates and has reached a level of general acceptance within the digi-

tal forensic community there are still questions regarding some features of the

physics behind the method. [41] expanded upon the method above to generate

a PNU hybrid trace model based on the inhomogeneous nature of both PRNU

and Dark Current (DSN). In [80] it was demonstrated that DSN exhibits sig-

nal power which adds to the overall correlation energy during the original SPN

methods even when using sensors that have DSN correction methods. Since it

is accepted that DSN is heavily temperature dependent, we investigate whether

the current SPN methods are immune to temperature bias.

The rest of the chapter is organised as follows. In Section 7.3 we document

the prior efforts in this field and highlight our novel contribution. In Section

7.4 our methods and experimental set-up is documented. The results of our

experiments are presented in Section 7.5 before being discussed in 7.6. Finally,

future work is presented, and the chapter is concluded in Section 7.7.

7.3 Related Work

A reliable method of linking images to their source camera is through the anal-

ysis of pixel non-uniformity (PNU) sensor noise to generate a PRNU trace often

referred to as a fingerprint [12, 41]. The basic premise of these methods is to

apply a high pass filter to an image which isolates a noise residue directly related

to the non-uniform nature of how the sensor outputs an electrical signal. This

non-uniform output is due to manufacturing defects such as misalignment and

inconsistent silicon dopant across a wafer during production [81]. An example
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of this can be seen in Figure 7.1.

(a)

(b)

Figure 7.1: (a) A cross section of a CMOS image sensor. (b) Inconsistencies within the diode
region can be visually observed between neighbouring pixels. While this will not effect the
overall function of the sensor this is an example of pixel non-uniformity (PNU).

A photo-diode consists of a junction of positively and negatively charged

semiconductor material to form a depletion region. When a photon enters this

depletion region it produces an electron-hole pair by transferring the energy of

the photon to an electron resulting in the electron moving to a higher valence

band or even becoming a free electron. We refer to these free electrons generated

from photon energy as e−PH . e−PH is stored in the N-well semiconductor region of

the photodiode which causes the depletion region to shorten.The associated hole

left by e−PH moves to ground via the P-type semiconductor. We refer to electrons
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generated due to the swapping of minority carriers without external excitation

as dark electrons e−DARK the movement of which promotes dark current. The

n-well region is gradually filled to capacity Nmax by the combination of these

electrons at which point the depletion region is removed:

Nmax = Ne−PH
+Ne−DARK

(7.1)

This combination of e−PH and e−DARK results in a sensor output PNU that

is linked both to the sensor’s PRNU and DSN. We have discussed how DSN

is included in the SPN noise model in our previous work [81]. In the previous

Chapter (Chapter 6), we have also shown that the state of the art method for

generating noise residue traces based on PRNU [82] contains additional forensic

information in the form of lens aberrations and dark current even when dark

current removal or suppression techniques are employed on the integrated circuit

(IC) [83,84]. This result verified the work previously highlighted in [16,41] where

it was shown that additional information could be obtained via a hybrid SPN

DSN method to solve the blind source camera identity problem in a real-world

setting.

To isolate the PNU effects, a three-stage process is used. The first stage is

applying some form of filter to obtain a noise residue via the formula:

Y = I − f(I) (7.2)

where Y is the noise residue obtained containing the SPN signal and f()
is the filter used to isolate the noise in the image. The second is the estima-

tion stage where the SPN is estimated from a set of noise residues to remove

the effects of random variables. Finally, the third stage is the post-estimation

phase where the SPN can be enhanced for more accurate and precise camera

identification.
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Focusing on the first stage of this process much work has been done in the

area of signal processing to provide alternative filters than the original filter

based on a wavelet corring method seen in [12]. The work of [85] demonstrated

the need for accurate highpass filtering since an image can contaminate the

estimated PRNU if it contains significant high spatial frequency content such

as edges, lines, contours and texture. Similarly, in the work of [83, 84] edge

effects of the image are taken into account before filtering to ensure effects such

as ringing are taken into account within the estimate. A well-written summary

of the state of the art regarding different filter techniques is discussed in the

background work of [86] before proposing an improved locally adaptive DCT

(LADCT) filter and documenting its effectiveness.

This noise residue is also susceptible to high-frequency patterns such as

those generated through JPEG compression [16, 87]. JPEG compression, being

a lossy compression algorithm, will remove high-frequency components and thus

lowers a potential correlation match between source and reference. All of this

additional information is of value to a forensic investigation as it enables a more

confident match to be established between camera and image in the context of

the blind source camera identification problem when correctly accounted for.

Understanding how to account for these additional sources of potential bias,

however, is left to a suitably trained investigator and reinforces the already

established work as seen in [12, 43, 87].

When tested across the limited range of -7.9○C to 29.5○C it has been observed

that this method is not affected by temperature [13]. However, the theory as

shown in [10] indicates that DSN is not immune to temperature and in fact

bears an exponential relationship due to the relationship between dark current

density and temperature following the equation:

JD ∝ T 2e
(Et−EG)

kT (7.3)
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The Scientific Working Group on Digital Evidence (SWGDE) has previously

released an error mitigation framework [75], which introduces a basic strategy to

identify and mitigate sources of likely error within digital forensic tools. Among

the quality control and tool testing measures described is finding “untested sce-

narios that introduce uncertainty in tool results.” In this chapter, we conduct

tool testing of the SPN method in high-temperature environments to determine

if the method is immune, particularly to the range in temperature seen in ve-

hicles during an Australian Summer. In this scenario, the dashboard of a car is

known to fluctuate from 19°C due to climate control, to more than 60°C. This is

known from the practical experience of the first author working in a proprietary

context for the automotive industry.

7.4 Research Methodology

To obtain a dark current signal which is uncoupled from other signals a series of

steps are followed based on the image pipeline model of a digital camera. We use

three Sony IMX219 CMOS digital image sensors mounted onto a Peltier plate

temperature controlled device. The image sensors have built-in low dark current

by design [70] through the use of correlated double sampling both before and

after the Analogue to Digital Converter [88]. Through the use of an Arduino

controlled Peltier plate device we vary temperature between 10°C and 50°C in

5°C increments. This Peltier plate is attached to a metal plate which extends

into thin fingers of metal that the IC of the image sensor is secured onto using

a custom 3D printed enclosure and thermal paste. The IC itself is located onto

the metal finger rather than the PCB of the camera to ensure the temperature

of the sensor is captured as opposed to the temperature of the PCB the sensor

is mounted upon. To measure the temperature of the sensor an MCP9808 solid

state temperature sensor is mounted on the reverse side of the metal finger

underneath the sensor IC. This setup is shown in Figure 7.2.
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Figure 7.2: The Arduino controlled Peltier plate device used for controlling the temperature
of the cameras. Seen here is the mounting position used for the image sensor to obtain an
accurate reading of the sensor as opposed to the PCB. The black mounting square (shown
here) was replaced with an aluminium block for thermal sinking purposes before imaging was
conducted.

The aperture of the camera is covered with several layers of black electrical

tape to ensure no photons are allowed to enter the imaging column. Covering

the aperture ensures only dark frames are captured. Using a python script,

we set exposure time to a constant t = 1/1008s, and the effects of internal

amplifiers are controlled by setting a predetermined long wait time during the

setting up of the camera to allow the gains to reach a stabilised temperature

before setting the ISO light sensitivity to 800. Future implementations of this

experiment should take advantage of the additional code to be included in a

future release of the Raspberry Pi camera distribution [89] to allow the manual

setting of the Analogue and Digital gains [90]. Each image is saved as a JPEG

with 100QF setting with appended BAYER raw information to the end of the

JPEG file. JPEG is used due to a limitation of the Raspberry Pi Camera API.

While it is noted that JPEG at QF100 is not the same as lossless JPEG, the
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appended BAYER raw information is extracted to obtain a RAW format image

using DCRAW [91]. This BAYER raw format thus avoids all onboard processing

steps of the digital pipeline within the image pipeline model of the Raspberry

Pi Camera model [84]. To extract the RAW information from JPEG file it is

converted to TIFF using DCRAW as per [16] using the command:

dcraw -D -T -4 -W filename

For each temperature interval, an image set of 100 dark frames is taken

per camera. We prepare a noise residue for each dark frame by filtering each

image using a high-pass filter in the discrete cosine domain to extract the high-

frequency components using Matlab. This filter is similar to the one seen in [86]

however we only employ a simple image mask as demonstrated in Figure 7.3. A

cut off frequency of 150/1136pi is chosen to match the seminal work of [12]. This

mask is applied purely in the DCT domain as an implementation of “goldilocks”

filtering. The hypothesis is that simple filters run in quicker time with fewer

resources required and thus can serve as a useful tool for processing of large

evidence datasets.

Figure 7.3: The Gaussian high pass filter with cut off frequency (150/1136)pi in the DCT
domain. The cut off frequency is chosen to replicate that of the wavelet corring method
of [12].

The effectiveness of the DCT filter is demonstrated in figure 7.4. Pixels that

are greater than 95% full value are considered to be saturated and are ignored
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as hot pixels [32, 41]. Excluding saturated pixels ensures we are matching the

unique DSN as opposed to the current literature of saturated pixels. The DSN

noise residues are then averaged to obtain a single reference pattern for each

temperature interval. It is noted that 100 dark frames may be excessive and a

smaller number is potentially viable, however, this is excluded from this study.

We then correlate the reference pattern against a different set of illuminated

flat field images captured at 30°C and the same exposure time as the dark

frames. The flat field images were taken using six discrete interchangeable lenses

per camera resulting in a total of 300 images per camera, 50 per lens, per camera.

A total of 2,700 correlations were made across the three cameras between the

lens images and the dark current reference patterns. It is observed that the lens

affects the data (Figures 7.5); to offset this effect the raw data across all lenses

are treated as a single data set for each camera. This raw data is presented as

box plots in Figures 7.6. The result of these correlations is then averaged for

each camera to obtain a single result per temperature interval. These results

are shown in figures 7.8, 7.9 and 7.10.

7.5 Data Collection and Analysis

The results of the comparative test between the wavelet coring method and the

proposed DCT method used in the rest of this chapter is displayed in Figure

7.4.

A comparison of how long each method took to execute is displayed in Table

7.1. This table when read in conjunction with Figure 7.4 shows a computational

gain with a loss of correlation. Such a trade off is of benefit for large data sets.

Table 7.1: Run Times of Filter Methods

Filter Run Wavelet (s) DCT (s) Delta (s)
Set 01 630 272 -358 (-57%)
Set 02 832 315 -517 (-62%)
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Figure 7.4: A typical comparative example of the accepted wavelet filter as shown in [12]
compared to our DCT Gaussian filter.

Since a large-scale test of similar filters has already been conducted in [86]

we refer to those results as to the suitability of this method. The results shown

here are illustrated merely as confirmation that the tool, as built, is capable

of performing the experiment as designed in the remainder of the chapter. We

leave a complete, robust test of this “goldilocks” filtering method as future work.

The following observations are made. The DCT filter used may present itself

as a viable method for triage since the DCT filter on average took between 4

and 6 minutes to execute whereas the wavelet method took between 10 and 14

minutes over the same image data and same resource assignment. The DCT

method leads to lower correlation, but with negligible impact on the ability

to classify the source camera. The variability in time is due to local resources

assigned from the High-Performance Computer cluster beyond the control of the

operator. The difference in execution times indicates a speedup of approximately

60%. The trade off is a loss of resolution with each trial having approximately

37% lower correlation. Such numerical values are quantified only for this specific
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hardware and need to be considered across any resource being allocated.

The results of a single camera using the six different lenses are shown in

Figure 7.5. This graph omits the correlations from the non matched camera for

clarity. These omitted results are zero mean around the zero axes.

Figure 7.5: Correlation versus temperature plot for the various lenses across camera one. It
is clearly evident that even with only a DSN reference pattern that the lens still plays a role
in unique identification reinforcing the results of [81,83,84].

The results of each camera used in our method as a blind identified camera

to a dark current reference pattern are shown in Figure 7.6. This graph omits

the correlations from the non matched cameras for clarity. These omitted results

are zero mean.

Using the theory presented in [10] we apply a model based on the dark

current density model seen in Equation 7.3 to the measured results. This model

has the exponential form y = aebt. Each model resolves with an adjusted R2 value

of .9449, .9787 and .9523 respectively for camera 1, 2 and 3. These models are

shown in Figure (7.7) and then overlaid against the observed data in Figure 7.8,

Figure 7.9 and Figure 7.10. There is a strong indication that the correlation is
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Figure 7.6: Correlation versus temperature plot across the three cameras.

related to the DSN as hypothesised. Taking the b value from each model we can

approximate a value for the band gap energy Et−EG for the cameras 1, 2 and 3

of 0.1896 eV, 0.3676 eV and 0.1268 eV. These values are consistent for band gap

energies of silicon (1.1eV) and various dopant concentrations. Using this model

we can identify that the correlation increases up to an approximately constant

value. This constant value occurs when the temperature of the DSN reference

pattern matches that of the image. Using this analysis, we can determine an

approximate temperature for each image set. Camera 01 is identified as 30.5°C,

Camera 02 is identified as 28.35°C and Camera 03 is identified as 30.15°C.

Figure 7.7: The three theoretical curves plotted against each other enabling an indication of
the dopant strength to be determined.
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Figure 7.8: Correlation versus temperature plot for camera one showing the correlation in-
crease in accordance with the theoretical model to a limit which corresponds to the tempera-
ture of the image sets under test. Camera 1 Identified Temperature 30.5°C

Figure 7.9: Correlation versus temperature plot for camera two showing the correlation in-
crease in accordance with the theoretical model to a limit which corresponds to the tempera-
ture of the image sets under test. Camera 2 Identified temperature 28.35°C

It was observed that a prohibitively long time was required to take images at
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Figure 7.10: Correlation versus temperature plot for camera three showing the correlation
increase in accordance with the theoretical model to a limit which corresponds to the tem-
perature of the image sets under test. Camera 3 Identified Temperature 30.15°C

the exact temperature required for each set. As such, all images under test were

taken over the range T=30°C+/-2 due to the thermal balance of the equipment

used. The temperature sensor used for these experiments was an MCP9808. The

sensor bounced around the setpoint due to several reasons including observed

self-warming on the sensor during image capture and environmental conditions.

As such, at the extremes of temperature, it would become difficult to wait

for the experimental apparatus to set upon a fixed temperature. To ensure a

prohibitively long time was not needed to acquire images, all images were taken

over a maximum 4°C range of the target temperature. When averaged this could

cause the expected temperature of the image set to be between 28°C and 32°C

however, it is more likely than not that the average of the images would be 30°C.

Unfortunately, the temperature of the images under test was not recorded in

the EXIF metadata meaning the exact temperature could not be independently

verified.

The MCP9808 temperature device used in these experiments has an overall
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Table 7.2: Identified Temperature of Image Sets

Identified Temp (°C) Forensic Range (°C) Actual Range (°C)
Camera 01 30.5 26.0 - 35.0 28.0 - 32.0
Camera 02 28.35 23.85 - 32.85 28.0 - 32.0
Camera 03 30.15 25.65 - 34.65 28.0 - 32.0

accuracy of +/-0.25°C. Accuracies should, therefore, add to obtain an overall

error of +/-4.5°C of the expected target temperature of 30°C. Once this analysis

is taken into account, we see that each camera has an accurate temperature

result. We see that for each camera the forensic range should be as indicated in

table 7.2. From here we see that the result from each camera is aligned to the

actual range of the temperature taken during the image acquisition phase.

7.6 Discussion
In our work presented here, it is not the first time DSN has been used as a

forensic trace. However, it is the first time that a temperature dependency

has been observed and used for forensic inference. While the work of [32, 41]

identified the use of DSN for unique forensic identification it is only now that we

have further used the theory as presented in [10] to determine the temperature

that the image sensor was at during image capture. Determining temperature

using SPN methods is contrary to the existing narrative seen in [12, 13] who

suggest sensor pattern noise methods are immune to temperature variance. This

is particularly relevant since in our work we have used DSN reference patterns

against noise residuals which are traditionally used for PRNU based methods.

Our image sets thus contain both DSN and PRNU making up PNU.

Critically in this work, we have demonstrated once again a bias present

within the noise residues which is linked to the lens system of the camera.

Observing lens effects in such a manner reinforces the work of [80,83,84] showing

that the PRNU component of the PNU is excited differently due to the path

discrete photons travel through each lens element. This is, however, contrary
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to the existing understanding of the SPN method whereby the image is tied

uniquely to the image sensor with no contamination from sources which are

not unique to the individual camera such as interchangeable lenses. Further

investigation into this lens effect may lead to an understanding of why SPN

based methods can provide discrimination of make and model and not just

individual cameras as seen in [92]. Lenses may especially be relevant in [92]

since mobile phone cameras are built with integrated lenses.

Whereas the current literature has shown a distinct direction in optimising

filters used for sensor-based methods [86] to create more timely results we have

began a new focus to enable faster processing times. Such an approach may sac-

rifice precision. Lower precision does not lower the usefulness of the tool. The

quicker exclusions can be made in the field means a focused effort can be made

in a laboratory environment on evidence that requires robust examination. This

would counter the current practice of bringing most devices back to digital foren-

sic laboratories and allow a more efficient expenditure of resources. Excluding

devices is particularly relevant in the application of images on what [93] refer to

as Type 2 and Type 3 mobile devices. These are devices in which large amounts

of stored data including images which have the ability to store such data indef-

initely. Efficient resourcing to allow time critical decisions is paramount when

forensic intelligence is looked at in the military context where time can be of

the essence due to the involvement of austere environments, sensitive and high

profile targets and the resultant need for rapid execution [94]. By indicating

how a simple, good enough “Goldilocks” filter can cut down on analysis times,

we suggest such tools can be adopted into on-site triage packages resulting in

a more focused application of search warrants and more efficient use of forensic

capabilities in the future. More work is required to verify the capability of such

filters.

Additionally, we expect that should a filter capable of obtaining the PRNU
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in isolation be developed than this result will not be replicable as PRNU is

indeed temperature invariant [12]. It is important to once again affirm that the

noise residues being used in PRNU identification do not only contain PRNU,

but are in fact SPN residues. This is a critical and important distinction to

be made and is why our temperature identification methodology proposed her

works.

7.7 Conclusion and Future Work

In this chapter, we have demonstrated a temperature bias in the method as

first shown in [12] and expanded upon in [41]. This temperature bias present

relates to the presence of dark current within an image and proves to be a useful

forensic trace in its own right. We use this trace to isolate the temperature that

an image is taken at independent of other sources such as EXIF metadata. This

result is demonstrated across three CMOS image sensors of the same make and

model and is experimentally linked to the dark current of the device. Further,

even when engineering designs are implemented to minimise the effects of dark

current at the sensor silicon level, the effects of temperature on the SPN methods

are still apparent indicating dark current is never completely removed.

This study is, however, only an initial study into this physical phenomenon

and should be conducted on a much broader sample. In the course of this study,

we were exposed to a limitation in the ability of our lighting apparatus. This

limitation resulted in an inability to vary the intensity of light that a scene was

illuminated with. This work should be replicated using various exposure times

and light intensity to measure the effects of dark current more thoroughly on the

sensor pattern identification methods for the blind source camera problem. It is

expected that light would also result in a variation in raw correlation obtained

for each positive match. Such variances in correlation are expected to stack

per the additive noise model and exacerbate the effects of either temperature or
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light intensity.

Additionally, our small sample of image sensors means that this study is not

an all-encompassing commentary on the issue of the thermal effect of SPN. Given

the vast array of CCD sensors still in use, and the fact that their technology

is significantly different to the active pixel CMOS sensors used in this study,

verification on CCD sensors should be considered. Since the mobile imaging

market is significantly increasing in size and complexity (for example Apple

products with multiple sensors for a single image) a more extensive array of

tests against CMOS sensors should also be conducted as future work. This

initial study, however, has demonstrated a significant change in thinking to the

current literature that SPN methods are immune to temperature dependency

and thus, a new avenue of research is now opened to explore and exploit this

phenomenon for forensic purposes.
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Chapter 8

Discussion

8.1 Introduction
In this chapter the main findings of the thesis are summarised and contextualised

within the existing literature. These findings fall into three main categories:

applied signal processing theory, forensic indicators from manufacturing process

variations, and findings for specific forensic indicators already used to solve

the blind source camera identification problem. Each finding is discussed in

turn with reference to the existing literature noting where the same ideas are

reinforced and where new divergent theory has been discovered. By outlining

where the theory diverges and converges the body of knowledge is moved closer

towards a unified theory of sensor pattern noise for the identification of digital

cameras in a forensic context.

8.2 Applied Signal Processing Theory - A new

model for Pixel Non Uniformity
We start with a discussion of the signal processing methods that have been

applied in this work that have previously not been seen or have been used

to obtain other conclusions. The concept of sensor pattern noise (SPN) for
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discrete identification of individual sensors is not original. It was introduced in

the context of dark current in [32] and further elaborated upon in [41] in a hybrid

template alongside photo response non-uniformity (PRNU) noise. PRNU was

first introduced in the work of [12] some years prior where it was shown that

PRNU could be obtained from the use of a noise free image obtained through

the use of a de-noising filter subtractive cancelling everything but the noise

remaining in an image under test (IUT). Through the work of Chapter 6 it

has now been demonstrated that lens effects are also present within the noise

residues used in these SPN methods. This reinforces the findings of [60] who

demonstrated that lens aberrations were able to be used to uniquely identify

source camera lenses. This is the first time however, that this has been done

via SPN methodologies.

As discussed above, the existing literature has already demonstrated that

SPN can be filtered to obtain forensic indicators which are unique to aspects

of the camera including the sensor specifically. To uniquely identify a camera,

matching an image to the image sensor provides a link that cannot be easily

disrupted. Other methods of matching often link only to make or model of

camera and not a discrete camera in its own right. To identify a sensor, SPN

takes advantage of pixel non-uniformity (PNU). This work has demonstrated

(Chapter 5) that PNU is made up of any defect within the ability of a sensor

to convert photons to electrons in a repeatable fashion. From an electrical

engineering perspective this can include any tolerance within the manufacture

of layers which makes up the circuitry of a discrete sensor including the lens

structures, Bayer filters, photodiode and associated read out circuitry. This is

discussed further in Section 8.3.

While PNU is caused by any unique aspect of a sensor to convert light to

charge, using the SPN method PNU is practically seen as any high frequency

noise which survives filtering as described above. This method captures poten-
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tial forensic traces such as PRNU, dark current and lens effects. It is worth

nothing that the lens effects which make up PNU are from the micro lens and

sub lens (if present) which focuses light into the individual photodiode as part

of the sensor design and not the main lens which focuses light onto the sensor.

This is divergent to the model as presented in [12]. Lens effects from the main

LOS can still be present in the SPN method. However this is not a trace which

makes up PNU. Non unique signals also survive this filtering process for dis-

crete images such as random noise and high frequency image content. These

non unique signals contaminate the correlation from a signal processing perspec-

tive and cause low correlation scores even when a positive match is detected.

The impact of these non unique signals, what is effectively a random noise, can

be reduced through the use of averaging multiple frames with dissimilar scene

content.

Removing these unwanted signals through frame averaging is not the only

way to obtain greater accuracy and precision. Through the use of appropriately

designed filters a more accurate and precise estimation of the trace under ex-

amination can be isolated. This trace can be one of either PRNU, dark current

or other individual aspects which make up PNU or it can be a combination

of these unique traces to obtain greater statistical significance. Appropriately

chosen filters can also be used to prioritise speed ahead of precision. Such priori-

tisation can be beneficial for applications such as forensic triage of large amounts

of data. In addition to purpose built filters, methods in the signal processing

discipline can be applied with great effect to clean and polish the existing SPN

methods. Such methods include accounting for edge effects, a technique regu-

larly implemented for Fourier transforms which has been used to great effect in

this work.

It remains to be seen if smaller amounts of data can be used to create a

robust forensic reference pattern for a unique sensor. The work to date suggests

117



118

that as the forensic certainty increases with each additional trace that can be

obtained from the noise residue then the amount of unique data required to

identify the sensor should decrease. This hypothesis remains to be tested.

8.3 Forensic Indicators from Process Variations

Image sensors, much like any consumer device, are made to a margin usually

defined by cost. To make any device to this margin tolerances are required

to be defined by the responsible design engineers. The tighter the tolerance,

the more expensive the device is to make. Design tolerances are seen as the

bounds setting the small variations in between sensors. These small variations

can be exploited to uniquely identify one sensor over another. Much like any

variation in manufacturer or material quality, these small variations can be

visually inspected. Sensors that are outside of the defined tolerance are scrapped

and not on-sold to consumers. From Chapter 5 we can see that variations can be

seen on such areas of an image sensor as the Bayer filters, micro lens, photodiode

and read out circuitry when examined under a scanning electron microscope.

If Bayer coatings are not uniform on each pixel unit on an image sensor it will

cause some pixels to become hotter than others due to different wavelengths of

light entering the photodiode. Different wavelengths being captured will cause

different amounts of photons to enter an individual pixel than its neighbour at

the “same” wavelength. Such differences reinforce the hot pixel theory for sensor

identification [32] and provides a hypothesis as to why pixels can be hotter in

some images but remain within normal values for others. The hypothesis to be

tested is that the Bayer filter is not efficient or effective and is thus reacting

differently as light is entering the photo diode through different sections of the

filter. This should be further examined using point light sources at isolated

frequencies. The same issue could also be seen in the filter masks used during

the CMOS manufacturing process providing another source of process variation.

118



119

This work has began the process of establishing a cause for PNU as variations

during the manufacturing process. To conclusively assert process variations as

a cause of PNU, robust, large scale testing is required across a wider sample of

image sensors from a wider range of manufacturers. In this work we have only

examined one image sensor from one manufacturer. The process may differ

by manufacturer and by discrete image sensor. Process variation would cause

discrete changes which can be taken advantage of however, there has been no

evidence presented in this work to suggest that. [95] recently showed that SPN

methodologies can be used to identify image sensor make and model and not

just a discrete sensor when analysed against large enough data. This would

suggest that process variations are indeed a cause of forensic difference which

can be used to advantage.

8.4 Specific Forensic Indicator Findings
In this work, one of the key concepts explored in the SPN methodology is that

using different reference patterns keyed into different forensic indicators will

yield different results from the IUT. As seen in 6, three of these traces are

PRNU, lens effects and dark current. We now revise these traces in detail.

8.4.1 Photo Response Non-Uniformity

As demonstrated in 6, PRNU is the strongest of the three traces analysed.

PRNU contains the most amount of signal power followed by lens effects than

dark current. This supports that the PRNU approach to the SPN method is

not just valid but is the correct approach to obtain the the strongest possibility

for correlation. This work reinforces the validity of [12].

8.4.2 Lens Optical System

The lens system of a camera provided the second strongest signal in the anal-

ysis presented here. If this lens is static to the camera under test then it will
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cause an increase in correlation however, if the lens is mismatched then the

correlation will be negatively affected. Since PRNU dominates the SPN in the

methodologies used in this work the correlation still performed a positive match

even with mismatched lenses showing that an accurate match is possible even

with mismatched lenses.

Extending this concept, the work discussed in Chapter 5 showed that the

lens system unique to the image sensor itself is a likely contributor to PNU.

Misalignment with the micro lens or sub lens structures can form additional

aberrations in addition to the lens optical system of the camera. These aber-

rations cannot be easily removed or substituted between image sensor, camera

makes and models even with the use of specialised hardware. As such it is likely

that these will cause PNU on a sensor. Further examination is required.

8.4.3 Dark Current

The most significant finding of this work is that the temperature of an image

can be determined through analysis of an image’s dark current. By using a

specifically constructed reference pattern containing only dark current at set

reference temperatures the temperature of the image can be determined. This

is documented in Chapter 7. Most importantly, it shows that SPN methods are

temperature dependant correcting a misconception documented in [12, 13]. It

also reinforces the work of [32, 41] which demonstrated that dark current can

be used in conjunction with PRNU to obtain a positive match. The conclu-

sions that have been documented however have been drawn from one make and

model of image sensor. While dark current is present in all image sensors the

conclusions that have been reached are only applicable to the Sony IMX219PQ

image sensor that has been used in this work. This study should be extended

to a wider sample including those from other manufacturers to ensure it is not

a characteristic of a unique process variation. however, given the theory pre-

sented in [10], it is unlikely that these findings are isolated to a unique process
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variation.

8.5 Conclusion
Several new areas of research have been opened up by this thesis with many

more being reinforced. It is recommended to the community that future work is

conducted to reinforce the findings, particularly with a focus to develop sound,

effective and efficient triage tools and methods for the on-scene investigator.

This is of particular importance to time critical investigations as those seen in

austere environments that the military continually finds themselves operating

in.
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Chapter 9

Conclusion

This thesis has explored the science behind SPN methods used for camera iden-

tification in the context of the Blind Source Camera Identification problem. It

has been demonstrated in Chapter 7 that it is possible to create a method which

uses fewer resources than the currently accepted methods to solve this problem.

Critically this was demonstrated in Table 7.1 through the use of a DCT filter

with the same cut-off frequency as the existing literature. This method can

be further refined to further reduce resources required. Dark current and lens

effects have been shown to contaminate SPN. This is apparent even when DSN

is reduced through on-chip methods. Since these noises contaminate the signal

it is possible to use this to our advantage. A more precise match can be ob-

tained by using these multiple sources of noise when correlating an image to a

reference pattern. It has also been demonstrated that the temperature of an

image at time of capture can be determined from careful analysis of the DSN

correlated against reference dark images taken at known temperatures. Under-

standing SPN methods in this context will provide greater certainty to the law

enforcement and intelligence communities moving forward.
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